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ABSTRACT

This work is concerned with predicting the forces acting on slender
bodies, namely hydrofoils and wedges, in rotational, supercavitating
flow. Methods are given for esteblishing not only qualitative but
quantitative measures of the effects of rotation in linearized, super-
cavitating flows.

A linearized theory is developed for steady, two-dimensional
flow under the assumption that the flow has a constant vorticity
throughout. The effects of gravity, viscosity, and surface tension
are neglected. Tulin's original closed-cavity model is employed. A
basic assumption of the theory is that the slender body-cavity combina-
tion causes only small perturbations in the velocity components of
the basic shear flow. The stream function of the rotational flow
satisfies Poisson's equation, which is a linear, inhomogeneous,
partial differential equation. By using a particular solution of this
equation, the linearized, rotational problem is reduced to a problem
involving Laplace's equation and harmonic perturbation velocities.

The boundary conditions for the perturbation velocities are established
from facts known about the body-cavity combination in the supercavitat-
ing shear flow. The resulting boundary value problem is solved by

the use of conformal mapping and singularities from thin airfoil
theory.

The theory is applied to asymmetric shear flow past wedges and
hydrofoils and to symmetric shear flow past wedges. Analytic expressions
are given for pressure, drag, 1ift, and moment coefficients as well as
cavity length, cavity area, and cavitation number relationships. The
presence of vorticity is shown to create significant changes in those
forces acting on the slender bodies and in the shape and size of the
trailing cavities. The results are summarized in tables, graphs, and
tabulated numericel calculations.
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1. INTRODUCTION

Cavitation occurs in a fluid flow as a consequence of local pressure
reduction, generally brought about by high local velocities. The devel-
opment of high-speed submarines, umderwater missiles, and other vehicles,
together with the surface-piercing hydrofoil ship, has renewed interest
in the large scale effects of cavitation. The hydrofoil and wedge (or
strut) are practical parts of the total hydrodynamic system of most of
these vehicles. In many cases these parts have long and slender cross
sections with their greatest dimension nearly parallel to the flow direc-
tion. At sufficiently high speeds, common for present vehicles, these
slender bodies produce long, trailing, steady-state cavities as the result
of air ventilation or cavitation. The characteristics of these so.called
supercavitating flows about bodies are of particular interest to the de-
sign engineer. If the cavity pressure does not differ greatly from the
free-stream static pressure, the velocities near the body and cavity do
not differ greatly from the free-stream speed. It is possible, then, to
study the flow by means of a linearized theory which is based on the well-
known two-dimensional theory of thin airfoils.

Tulin [l]l appears to be the first to have used the linearized theory.
The work published since the appearance of Tulin's paper has been concerned
with both higher order linearized theory [2] and extensions of the first
order theory to include effects found in real flows, e.g., surface tension
[3] and gravity [4,5). The linearized theory has been applied to many
practical problems which were insoluble by more classical means. The
progress of this work up to 1960 is summarized in three papers, two by
Tulin [6,7] and one by Parkin [8].

In the linearized, two-dimemsional theory the effects of viscosity
are usually neglected. The flow is assumed to be irrotational and the
velocity is assumed to be uniform for points far from the slender body.
However, since no fluid is completely inviscid all real flows are rota-
tional. Even when viscosity is neglected, the flow picture may sometimes
be best represented by a rotational flow.

IThe numbers in brackets refer to the references listed at the end of the
work.




Meny rotationsl flows have already been studied empirically and ana-
~ lytically. For example, the only known exact solution for the problem of
finite wave motion is Gerstner's trochoidal wave which, while producing

a rotational flow, also satisfies exactly the constant pressure boundary
condition at the free surface. Also, two common physical flows, the
eye of a typhoon (& forced vortex) and uniform viscous open channel flow,
are rotational. Lamb [9] and Groen [10] have studied another rotational
flow - the propesgation of small surface waves on & stratified fluid. The
rotational flows studied by Yih [11] are of particular interest because
his results show the importance of vorticity in reproducing physical ef-
fects. He considers the steady, rotational flow of an inviscid fluid in
a two-dimensional channel or a circular tube toward s sink. His solutione
show the unusual (for inviscid theory) features of separating streamlines
and corner eddies. Note that for a viscous fluid flowing in a channel or
pipe with an abrupt contraction, eddies occur in the corners formed by
that contraction, but such eddies are not predicted by an irrotational
analysis. In 1943, Tsien [12] recognized that there were many applications
in two-dimensional airfoil theory where irrotational flow conditions are
not satisfied. He states in his paper on airfoils in shear flow that, for
example, the large vertical velocity gradient near the ground can be ap-
proximated to the first order by a flow with a linear velocity distribu-
tion (a shear flow). Thus, according to Kronauer, ". . . the discussion
suggests that over a limited stream length the essential character of the
motion may be closely approximated by specifically neglecting the viscous
forces acting in that stream length, but by including (perhaps approxi-
mately) the effects of viscous forces up-stream [13]."

The present work may be regarded as an extension of both Tulin's
linearized theory for supercavitating flow and Tsien's method for rotational,
non-cavitating flow. Methods are given for establishing not only qualita-
tive but quantitative measures of the effects of rotation in linearized,
supercsvitating flows. The effects of gravity and surface tension are spe-
cifically neglected. In the study a uniform, parallel, irrotational flow
is perturbed by a uniform shear flow - the simplest perturbation of the
parallel flow and a flow with constant vorticity. The vorticity is pre-
sumed to have come from some up-stream disturbance, e.g., a boundary layer
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developing on the body of a vessel or test tunnel walls. Hydrofoils and
struts which lie in the slipstream or wake of other components would be
in such a vortex field.

The perturbed flow and the physical problems to be studied are shown in
Figure 1. The perturbed flow is also & uniform shear flow and, a&s such,
is characterized by a linear velocity distribution and a constant vorti-
city € throughout. The irrotational and rotational perturbed flows both
satisfy the equation of continuity; therefore the stream function y exists
in both. However, the velocity potential @ can, of course, exist only
in the irrotational flow. Physically, the flow studied is two-dimensional,
and the fluid is of infinite extent. The flow is supposed to detach at
the leading and trailing edges of the hydrofoil and at both edges of the
blunt base of the symmetric wedge. Finally, it is assumed that the cavity
length, when measured from the leading edge of the body, is greater than
that of the solid body, i.e., full cavitation occurs.

The main paper considers rotational, supercavitating flow past wedges
and hydrofoils. The bodies chosen have been restricted to the slender
wedge and the flat-plate hydrofoil. The Appendixes include a discussion
of supercavitating flow past wedges in a transverse gravity field. The
solution to this problem complements the gravity flow solutions already
given by Parking [4] and Acosta [5] and arises directly from the solution
of the rotational flow past =z wedge.



2. THE LINEARIZED THEORY

In this section, a linearized theory is developed for two-dimensional,
supercavitating flows under the assumption that the flow has a constant
vorticity throughout. The effects of gravity and surface tension are
neglected. The flows considered are those past slender wedges and flat-
plate hydrofoils as shown in Figure 1. It is further assumed that the flow
is steady and that the fluid is both incompressible and inviscid. Because
of its simplicity and convenience, Tulin's original closed-cavity model
is employed in this work. It should be noted that other linearized models
are available [14,15].

2.1, Notation and Boundary Conditions

Figure 2 shows two typical fully cavitated flows; the notation used
is introduced in the following discussion. The incompressible fluid has
a constant density p . The base flow which is a parallel, uniform shear
flow has been disturbed by the introduction of the slender body of unit
length. The unit length body is used without loss of generality, since
it is equivalent to normelizing the problem on the actual body length.
Although it is certainly disturbed in the neighborhood of the slender
body, the base flow is assumed to be undisturbed at infinity and is char-
acterized there by a constant vorticity €. The wedges are aligned symmet-
rically with their longitudinal center-lines parallel to the x-.axis, and
hydrofoils are placed at an angle of attack « with respect to the x-axis.
The origin of the rectangular coordinates is at the leading edge of
the solid body. In terms of these coordinates, the velocity profile at
x=-» is U, -ey, with U, representing the velocity at (-x, 0). The
pressure at infinity is taken to be the undisturbed static pressure p,.
The flow velocities U and V are in the x- and y-directions respectively.
The total velocity at any point in the fluid is q, while the velocity on
the cavity surfaces is q,- The closed, trailing cavity which springs from
the solid body is characterized by a length £ - greater than one, an ordi-
nate yc(x), and a uniform, constant pressure pc. It is presumed that
the cavity is filled with air or water vapor. The pressure P, is always
less than or equal to p,-

- b .



In general, the only restriction imposed on the shape yo(x) of the
slender bodies is that the flow over the body must satisfy & Brillouin-
Villat separation condition [16]. Under this condition the maximum velo-
city on the surface of the body must occur at the separation point; this
corresponds to requiring a fixed and known point of separation. In the
flows considered, this condition is satisfied.

In a two-dimensional flow, the vorticity component is

R
dx Oy

and the rotation w = §/2. It is known that the flow has a constant vor-
ticity £ = € at (=, y). From the Helmholtz theorem on the permanence
of rotation, it follows that the vorticity € persists throughout the
fluid; thus,

&'?&:e’ (2.1)

Since the fluid is incompressible and the flow is steady, the continuity
equation

?H-}ﬂ:

> o o} (2.2)

must be satisfied throughout the fluid. In a rotational flow the stream
function ¥ = Vv (x,¥) exists and may be defined 8o that

U=-¥,V=%¥o (2'3)

The function y satisfies equation (2.2) identically, and Poisson's
equation

= Pylx,y) = ¢ (2.4)

%
2[%



is produced when y is introduced into equation (2.1). .
The Bernoulli equation for rotational flow is found by
integration of the Euler equations. They are, in this case,

U§+V3§=-}
v v 1

U3-+Vw=-— .

Following rearrangement, these equations become
U av d 2)
@ LI N

Integration gives the Bernoulll equation for steady two-dimensional
flow with constant vorticity (or rotation),

P+ %pqe - p€\,,r = constanto (2‘5)

Poisson's equation (2.4) is a linear, inhomogeneous, partial dif-
ferential equation. Therefore, by the use of superposition, its
solution can be written as ¢ = WH + WP’ with VZWH =0 and Vsz = € .,
The stream function WH represents a new harmonic flow; WP is a
particular solution of equation (2.4). From equation (2.3), then,

U(x,y) = UH(x)y) + Up(x)y) (2.6)
V(x,y) = VH(x:y) + VP(X:Y)

2 z
If one lets v = f%-, V2WP = € as desired, and ;

UP=-€y’ -
VP=00 -



Thus,

U=UH- €y

V = VHO
It is evident that any problem which requires a solution for U and V
can be reduced to an equivalent problem for the harmonic velocity

components uH and VH.

With the flow conditions at infinity kmown, it remains to
establish the boundary conditions on the solid body and cavity walls.
These conditions and a compatible boundary value problem are estab-
lished in terms of a linearized theory. The basic assumption of such
& theory 1s that a slender body-cavity system causes only small per-
turbations in the velocity components of the basic shear flow. This
assumption does break down in the neighborhood of singular points.
But, as Tulin [6] notes, the effect of this breakdown is usually
restricted to the area of the singular points, and the overall char-
acteristics of the flow are often well reproduced by lineariged
solutions. The flow pattern is a combination of parallel, uniform
shear flow and, superposed on this, small velocity perturbatioms.
Since it is desired to formulate eventually an harmonic boundary value
problem, the flow velocities are written in terms of the harmonic per-
turbation velocities (u,v) in the x- and y- directions respectively.
From equation (2.6)

Vev

U=l +u- GV} (2.62)

in the linearigzed flow.
In a linearized theory for irrotational supercavitating flow, it

is assumed that the perturbation velocities (u, v), the attack (or
wedge semi-) angle a, the body shape (or camber) yo(x) , and the
cavity ordinate yc(x) are small. First order terms in these quanti-

ties are retained, but second and high order terms are neglected. The
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force coefficients obtained by such a linearized theory are generally
correct only to the first order. In the present rotational development,
terms of the form €yc arise in the boundary conditions for the per-
turbation velocities; in order to preserve the first order smallness of
these velocities, it is necessary to restrict the relative vorticity
€/U°° to a size of the order of one. In this case, then, the flow
reversal, which occurs in a uniform shear flow at y =~ q”/e, does not
occur near the body-cavity combination, whose ordinates are usually very
small compared to one. Finally, from the Cauchy-Riemann equations as
applied to the harmonic perturbation velocities ,2 it is seen that these
velocities change very slowly in space when the streamline slopes and
curvatures are small [1]. For this reason, the linearized boundary
conditions may be applied on the x-é.xis instead of the body-cavity
surfaces. These boundary conditions for the harmonic perturbation
velocities are established from facts known about the body-cavity

system in the shear flow. .
In order to formulate the boundary conditions on the cavity, it
is first necessary to define a cavitation number. The cavitation -

nunber is the parameter which relates the pressure conditions in the
fluid stream to those in the cavity. It indicates the degree of
cavitation; as the cavitation number decreases, the cavity size
increases. Recalling that = ¥ + €y2/2, one has from equation
(2.5), to the first order in €,

2 2
P, =P, €V €2¥“ 4,

w2 2 EE

- 1 = constant,

The velocity U, and pressure p_  are taken at (- «, 0), while 1

and qc are taken on the cavity streamline. In general, the extension
of the cavity streamline does not coincide with the x-axis except at

the leading edge of the slender body. The stream function *H represents
the difference between the harmonic stream function value on the x-axis
and its value on the up-stream extension of the cavity streamline.

ESee equations (2.13).



Thus, WH = ...Umy‘i° where Y, is the ordinate of the cavity streamline
at X = «o, In the case of a uniform flow ebout a cylinder with
circulation [17], -Y, is infinite. However, in the present cases
of a linearized uniform shear flow past slender wedges and hydrofoils,
the value of Y, is not known a priori. It follows that in these
rotational flows the cavitation number o, defined in the usual sense

as

& ——C 2.7
o _?-%p (2.7)

cannot be used directly since

2

g = -1 + - —
; I Y U2
© [ 00

and y_ is unknown. Therefore, it is convenient to define a rotation-
al cavitation number Z. Let I be defined so that

2
q

Le—=-1; (2.72)
Z
then, in the following treatment most terms will retain the same form
as thelr irrotational counterparts. When either € - 0 or the flow
is symmetric I = 053 otherwise,
o=3+ E;yz (1 - ;;"3)
0 (- )
This relationship provides a means for relating the pressure difference
and flow velocities in experimental programs. The rotational cavitation
number may be determined either by measuring the up-stream and cavity
velocities directly or by first measuring the pressure difference, up-
stream velocity, and vorticity and then measuring A the ordinate

3For a symmetric shear flow about a symmetric slender body, the x-axis
and the bifurcated cavity streamline do coincide for x < 0 and
equation (2.7) holds. 1In this case, o = I. See Section 3.2 for
discussion of such symmetric flow.



of the stagnation streemline.
On the cavity walls, from equation (2.5), the velocity q, 1s
constant because P, is constant for & given vorticity €. Writing

qc in terms of the perturbation velocities and introducing the result

into equation (2.7a) ylelds

ey
2u c 1 2 2 22
Z=TJ—-—-U—-—+F‘ [u + Vv +€yc-2u€Yc}- (2'7b)

The cavity boundary condition is obtained by neglecting terms of order
greater than one in equation (2.7b), thus producing

Uz
— = u(x,0) - €y (x), e <x <4, (2.8)

which is applied on the x-axis. When equation (2.8) is applied to

the upper cavity surface in the flow past a hydrofoil, the quantity a
equals zero; otherwise, a 1is equal to one for flows past both wedges
and hydrofoils. If one lets

Uc=Um+u-€yc

on the cavity, then qi = Uﬁ + v2. Thus, from equation (2.7b), to the
first order,

U, =U, (1+ £/2). (2.9)
From equation (2.7a) one obtains
Uc i1 qc = Uﬂ 1 + Z .

In the present work equation (2.9), which is consistent with the
linearigation, is used; however, it should be noted that

1+Z/2~ V1i+Z.
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It was noted previously that the harmonic perturbation velocities
change very slowly when the streamlines have small slope and curvature,
For this reason, since the cavity is assumed to be long and slender, the
variations in the quantity €y  in equation (2.8) are certainly small
over most of the cavity. It 1s reasonable, then, to replace eyc with
an average value I % on the upper and lower cavity surfaces respective-
ly. This averaging technique was introduced by Parkin [4] in dealing
with a linearized theory for flow past & hydrofoil in a transverse
gravity field. The averaged quantity E/er is non-dimensional. It
must be treated as part of the problem's solution and is used as a
basic parameter when the results cannot be determined directly as a
function of €/ U . Note that the relative vorticity €/Uw, which has
the dimensions (1/LENGTH), is independent of the length of the solid
body and truly measures the relative size of the small constant vor-
ticity and the up-stream velocity, i.e., the rate of change of velocity
with y at infinity. Equation (2.8) now becomes

end u(x,0) = U z/2 - §, £, y<O0 (2.82)

u(x,0) =Y Z/2+ & a<x<4 ¥y2 0}
1<x< .
These equations are applied on the upper and lower cavity surfaces
respectively.
The total velocity on the solid body must be tangent to the
surface of the body; hence, in terms of the perturbation velocities,

a, (x) v(x,3,)
dx .U:' eyo + u(xayo) *

The denominator may be written as
U, ~ &, +ulx,y,)) = U, + 0,

with 0 = (u(x,yo) - u(x,yc) - €y°(x) + Eyc(x)). From the basic
assumptions of the theory, 1§ << Uc' Since



ayo(x)

dx Uc(l + a:) ’

the denominator may be expanded in a binomial series. The result is

dy (x)

e aeo [®])-

c

After linearization, the boundary condition is

dyo(x) v(x,0)
ax = " U ’

0<x<1l, (2.10)

c

and it is applied on the x-axis. Furthermore, this equation is also
valid on the cavity surfaces and gives the surface slope at any point
along the x-axis. In the cases of slender wedges or hydrofoils,

dy (x)
T:tanafea.

Equation (2.10) becomes

v(x,0) = + « U, 0<x<1, (2.10a)

on the upper and lower wedge surfaces respectively, and

v(x,0) = ~ U, 0<xg1, (2.10a)

on the solid surface of the hydrofoil.
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Examination of equations (2.8a) and (2.10) shows that the result
acquired in equation (2.10) provides automatically for smooth separation.
This condition may be thought of as equivalent to the Kutta condition in
airfoil theory in that both conditions serve to single out a unique
solution to the flow boundary value problem.

The condition of cavity closure is characteristic of Tulin's model
of the finite cavity. If the rotational and new irrotational flows
are studied, it is seen that the subtracted portion Vp of the
rotational flow makes no net contribution to the flow within the
cavity~body shape. Hence, the cavity closure condition must hold in
either flow, 1i.e.,the net strength of sources within the body-cavity
system must be zero.

Finally, since the base flow is undisturbed at infinity, the per-
turbation velocities (u,v) approach zero at great distances from the
body-cavity system. In summary, the conditions to be imposed are:

U;Z -
U === + € On the cavity

2
v=:aUc on the body
(u,v) > 0 at infinity
The cavity is closed.

The flow must separate smoothly from the solid body.
These conditions are sufficient to determine the harmonic perturbation
velocities (u,v).

2.2. Methods of Solution
Two methods of solution and their corresponding boundary value

problems are given. The first is that method used originally by Tulin f1].

This method makes use of the velocity potential of a source distribution
and singular integral equation theory. The second method is based on
conformal mapping of the physical plane onto the exterior of the unit
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circle. This latter method, which has been used by others [4, 5, 8, 18], "
has proven most convenient for the present work; however, the former
method is outlined here for completeness and comparison.

The first method i1s given here for a symmetric flow such as that
found in Section 3.2 and Figure 4. The solution for the mathematicel
problem arising from the given conditions on (u,v) is found in terms of
the velocity potential which exists for the harmonic flow represented
by (u,v) and Vg The potential of & distribution of sources along
the x-axis between the leading edge of the body and the close of the
cavity is

)
89) = - [ wle) dnx ot . (2.12)
The distribution function u(t) represents the source strength and

2 2
r =(x-§)2+y.

This distribution produces a function with the required symmetry.

The velocities are designated by -
4

u(x,y) = - % -%’n_[ n(e) -(’-‘-izn dag
v(x,y) = = g‘g - -]gn[u(g) ig g . (2.12)

The given boundary conditions on (u,v) are applied on the x-axis, and
one must pass to the limit y » O in these equations. Taking the
Cauchy principal value of the integrals when required and using the
substitution tan t = (x - ¢)/y, one obtains

' 1 f&‘ndi
u(x,0) = p\x =& (2.12a)
v(x,0) = p (x) / 2 . .

Incorporating equations (2.12a) into the conditions given at the end -
of Section 2.1 produces the following complete boundary value problem:
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To find p(x) such that

14y (8)
a. E;(cﬁ.m-m2+21ﬁ-[2ucrdt-f(x),l<x<£.
-t ® “x=-t

@ (x)
b. u(x) -2[’0-&——, 0<x<1.,

¢c. The cavity is closed; hence

)
dy_(x)
[uomn e [0 252 e a0
(o]

d. The separation is smooth; hence u(x) finite as
x=>1,

Since the flow is symmetric, it is sufficient to consider only y > O.
From equation (A-5) of Appendix A, one has
)/

s - -1)
wex) = - (L - x’)‘ (x - 1) %}—S——l Fldae.

Once u(x) 1is known, the cavity shape and pressure force coefficients
can be calculated by using equations (2.12a) and the definitions
given in Section 2.3.

The second method of solution also makes use of the new harmonic
flow. In this case, it is convenient to work with complex variables.
Following substitution of (u,v) and ¥p into the vorticity equation
(2.1) and continuity equation (2.2) they reduce to

dv _du
= (2.13)
and %a% 13

respectively. In terms of the complex variable 2z = x + 1y, the total
complex velocity may be defined as

Ww(z) = U+ 3e(z - z) + w(z),
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with w(z), the complex perturbation velocity, given by w(z) = u = iv. .
Equations (2.13) are seen to be the Cauchy-Riemann equations for w(z);
from these equations and the continuity of the flow, it follows that -
w(z) is analytic outside the cavity-body system. Also, since (u,v) > 0
at infinity, w(z) must vanish at infinity.

The boundary conditions are applied along a slit in the z-plane
corresponding to the x-axis where 0 <z <1 and z is real. The
complex velocity w(z) is analytic in the region exterior to the slit
in the z-plane. The complex z-plane and typical boundary conditions
are shown in Figure 3. The mathematical problem is to ascertain an
analytic function w(z) subject to boundary conditions on both ite real
and imsginary parts, as given at the end of Section 2.1l1.

The specific problems for the wedge and hydrofoll are tabulated
in Table 1. Note that in this table, conditions e, end f. are
equivalent to requiring that

In(w) = 0@), z >«

Real (W) = ((-:-‘:é), z > w, ’

The conditions listed in Table 1 are sufficient to determine w(z). It
is expected that the complex perturbation velocity w(z) will exhibit
singular behavior at those points on the slit where large changes
occur in the megnitude and direction of the velocity. These large
changes occur at the leading edge of the solid body and at the closure
of the cavity. Condition g. in Table 1 1s imposed to restrict

the magnitude of the singular behavior so that the pressure distribu-
tion, which is proportional to Re(w), remains integrable.

The determination of w(z) is accomplished by a method of conformal
mapping which permits the use of results already known in airfoil
theory. In accordance with Wu [18] and Parkin [4], the z-plane
is mapped conformally by a succession of transformations onto the
{-plane. The complex velocity w 1is held invariant at corresponding
points of the mappings. The transformations are listed in Table 2, *
and the various mapped planes are shown in Figures 3 and 5, in which
corresponding regions and boundary values are shown.
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It is seen that the boundary value problem for w may be solved
in any of the transformed planes. The {-plane is used directly
for wedges, while the problem is solved in the Q~plane for hydrofoils.
In either case, however, the singular functions which are the basis
of the problem's solution are established in the {-plane. From
Figures 3 and 5, it is clear that the real parts of the singular
functions must satisfy particular conditions on the real axis, while
the imaginary parts must satisfy other conditions on the unit circle.
In addition, the limiting conditions on w as 2z » - @« must be
met at the corresponding points in the {-plane or Q-plane. A

complete solution w({) is formed from a series of singular complex
functions. These functions, familiar in airfoil theory, and their
properties are listed in Table 3. The strength of the singularities is
limited by the pressure integrability condition previously noted.
The singularities are not of higher order than simple poles at points
on the slit. Figure 3 shows that the leading edge of the hydrofoil
maps onto § = 1, the leading edge of the wedge onto { = i, and the
cavity closure onto { = », These are the centers of the singular
behavior in the linearized theory; hence, most of the wi(C) in
Table 3 are singular at these points. These functions in Table 3 have
already been extensively used in linearized cavity theory and are
discussed in some detail by Parkin [4, 8] and wu [18, 19].

The solution w({) to a particular problem is given in terms of
the singular functions wi(C) by

w(§) --ZKIV:l + M+ 1N,
i

where the constants xi, M, and N are assumed to be real. These
constants are then determined by the conditions given in Table 1,
since the w({) formed is already analytic off the slit. In addition
to establishing the constants, the given conditions also produce a
relationship between the cavitation number I and the cavity length &,
with € and a as parameters. Following determination of w, the
cavity shape and pressure force coefficients can be found by using
equation (2.10) and the definitions given in the following part of
this section.
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2.3. Calculation of Results

The results of the linearized theory include the length-cavitation
number ratio (alreedy found in Section 2.2), the cavity shape, and the
pressure force coefficients for 1ift (CL) , drag (CD) , and moment
(CMO). From equation (2.10), the cavity shape is given by

X
y (%) = %I:[vax +y (a), a<x <4, (2.14)

For wedges, a =1 on both surfaces, while yo(l) = + @ on the upper
and lower surfaces respectively. For hydrofoils, a =0 and yo(O) =0
on the upper cavity surface; a =1 with yo(l) = - @ on the lower
surface. Also, using equation (2.10), one may calculate the body-

cavity area S, which is
2
s ==h[(y+ - y_)ax.

This equation may be integrated by parts and, since the cavity must
close, i.egédy = 0, one has

s ;&S% Xdx = %c- gvxd.x (2.15)

The contour integral B+C follows a closed, counter=clockwise path
over the surfaces of the body-cavity combinstion. Recalling that
v = -Im w(z), one may write the previous equations so that

Yo (%) = - 5~ I I viz + y_(a) (2.1ka)
and S ==~ ':[Ly_ Ims‘éwzdz, (2.158)
(]

where x = 2 on the slit in the complex z-plane. The latter result
was first given by Geurst and Timman [20].

Calculation of the pressure force coefficients is based on the
pressure coefficient Cp, which is given by
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i (2.16)
T '

In each flow the solid body and cavity surfaces lie on the same stream-
line. Thus, the Bernoulli equation (2.5) ylelds

2 2,2
P -, =%, (1-q/d).
The term on the right in this equation may be simplified by lineariza-

tion. Writing qz = Ui + v2 and qg = Ui + v2, one has qi = Uﬁ to the
first order and '

1- qi/qi = -2(q, - 4.)/q, - (g, - 3.)%/¢]
= -2(u, - U)/u, - (U, - Uc)z/Ui
= -2(U, - U,)/u,
after linearization. The pressure coefficient may now be written as
¢, = -20,(U, - U)AE,

with Uo end Uc being the x-components of velocity on the solid
body and cavity surfaces respectively. From equation (2.6a),

U, = u(x,yo) - € + U, eand from equation (2.9) U, =U_ + u_z/2.
Thus,

¢ =-2(1+3) (alny,) - - LR/, (2.16e)

There has been considerable discussion [4, 8, 19] regarding the
appropriate method of defining and linearizing the pressure coefficient
so a8 not to lose any first order terms. The above result is consistent
with that given by Wu (L9 ], in that the flow is continuous and C = O
at the trailing edges of the solid body for € = O. As Parkin hasp
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pointed out [4], however, in order to be consistent with the averaging
approximation when € ,‘ 0 and to have a continuous velocity at the
trailing edge, one must take ley| = |€| on the solid body for x = 1.
On a wedge, Yy =+ 0x; 50, to the order of the approximation,

€y=i.éx

on the upper and lower wedge surfaces respectively. On a hydrofoil,

eyg-Ex

on the foil to the order of the averaging approximation. The final
result for the pressure coefficient is given in Table 4. In additionm,
this table gives the remaining coefficients in terms of Cp. Note
that the drag coefficient in the wedge flows is based on the base
srea of the wedge; the remaining coefficients use the unit chord of
the body as a characteristic length. The method used to calculate
these force coefficients follows that used by Wu [18] on wedges
and Parkin [4] on the hydrofoil.

Finally, a rational means for evaluating the average parameter
€/u_ must be determined. From the manner in which &/U_ arises,
it is mathematically reasonable to let

%. = (%—) (cavity area)/2(4 - 1),

i.e., €/U_ equals the average value of €|yc| over the cavity. On
the other hand, the vorticity € creates an additional circulation

in the flow, and it is this important flow property which characterizes
the influence of the vorticity. (This result holds also in the case
of a supercavitating flow past a hydrofoil in a transverse gravity
field (4]). Thus, &/U_ 1is chosen so that the actual circulstion I
is equal to the circulation I' based on the constant perturbation
velocities associated with &/U .




The circulation T' is defined as

r.gS-a.as

where E is the total vector velocity and d-.’a is the elemental
vector path length on the closed contour where TI' is measured. Since
the perturbation velocities are defined in the harmonic rather than
the physical z-plane, it is convenient to balance I' and I in

the harmonic plane. From equations (2.6) and (2.6a), one finds that
U=U +u-¢€y implies that U, =U +u and V = v implies that

H
VH = v. Therefore, on the cavity where U = Uc’
Ug = U + &

and on the solid bodies,

The actual circulation I’ and T are given to the first order in
Table 5. Note that, to the first order on the solid bodies, the
circulation integral

[t + v axv vyt = [ (0, + wes.
body body

Observe also that in the expression for 'é/U” in Teble 5, the terms in
the large parenthesis are precisely equal to the cavity area for the
wedge flow and equal to the cavity area less the triangular area
between the hydrofoil and the x-axis for the hydrofoil flow. Thus,

the matching of circulations at once provides a rigorous and intuitively
satisfying result.




3. APPLICATIONS OF THE LINEARIZED THECRY

In this section the linearized theory developed in Section 2 is
applied to three problems: the first two are the supercavitating,
asymmetric and symmetric shear flows past slender wedges; the third
concerns a supercavitating, uniform shear flow past a flat-plate
hydrofoil. The solutions to all three problems are found by means of
conformal mapping, using the singularities shown in Tseble 3.

3.1. Asmtrie Flow Past a Weggg

This first flow is a supercavitating, uniform shear flow past
a wedge of unit length. The asymmetric, undisturbed velocity
profile of the flow is shown in Figure 1 (solid line profile). The
notation used is that given in Section 2 and Figure 2a.

3.1.1. Solution of the boundary value problem

The mapping of the physical z-plane and the appropriate boundary
conditions are indicated in Figure 3a, From the conformal trans-
formations in Teble 2, it is easily shown [5] that

==‘[1-M{-%52-W ] (3.1)

(: - Cl) (; "§2)

where ;1 and Ca are the roots of
g e atP2b-1)+1m (8- 80 (- 2D) =0
These roots are

¢ =1 (VF+ JI-T)
(3.2)

¢, =1 (VT- VET).
It is seen from Figure 3a that Cl is outside the unit circle and
represents the point 2 = «, while Ca is inside the unit circle and,

hence, does not represent a point of the physicel plane.
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The complete boundary value problem for this wedge flow is given
in Table 1, which was developed in Section 2. By using the singular
functions listed in Table 3, it is possible to construct a solution
function w({). A comparison of the boundary conditions and availeble
singularities shows that w({) should have the form

+ 1CInl + 1D . (3.3)

The function 1({ - 1/{) 1is selected to provide the proper closure
singulerity, and the term 1(¢° - 1)/(£% + 1) 1is used to satisfy

the condition that w(z) »0 as 2z > «», The remaining functions are
needed to fulfill the boundary conditions (a) through (d) in Table 1.
The real constants B and C are determined by considering w({) on
the real axis of the {-plane. Equating the values of w({) and the
boundary conditions there, one has

i
V(C)=B=*§-+'€,C>0
us
w(l;).n-cn..%--i, {<o.

Therefore, B = u”zla + € and C = 2€/. Equation (3.3) can now
be rewritten as

Uz 20U
V@) - e TS g e

2
TR "’f""ﬁ' (3.3a)

In this form w({) satisfies the differential equation and conditions
(a), (b), (c), (4), (g), and (h) of the boundary value problem. The
remaining conditions will serve to establish A and D and to determine
a unique relation between [/ and I for given velues of € and Q.
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3.1.2. Results
As Wu has pointed out [18], much can be learned by expanding w(z)

in negative powers of z as 2z > », The result is an infinite series
of the form

al+1bl a +1b

v(z) =8+ ib  +—=— + +0 <—§> (3.4)

From boundary conditions (e) and (f), one has
ao = bo = al = 0.
As z>w, {» Cl; hence, using equations (3.1) and (3.2), { cen

be expanded in descending powers of 2. Acosta [5] has shown that
one obtains

2= ¢, {1 . \/:(éz- 1), VE(E-1) (284 1 V(2 - 1)) o(_:?)} .

8z

(3.5)
This result is now introduced into equation (3.3a) and the combination

is simplified. This process is accomplished in several steps. First,
from Acosta's work:

.%f+z 2Ae ‘“é—r*‘”‘(c Z)' <T+c--rtni£—i¥

-2Aﬂ>+% [1‘3 St - A(}-l)\/l—]+i'-§ [mﬁ (4+1)4F
-%(1-1) (3£ + 1) «/T] +0(11)-
2
Second,

vith Q = M/z + N/22 + 0(1/z3), M= AE2-1)/2 and K= AE(f- 1)

(22 + 1 + ~J8(f - 1))/8. Following a series expansion on the small
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parameter Q, one has

112[3 bl = -€ + 1%3 (T + JET) + 1%3[3/%:'1)‘+ 'J‘U;lg (28+1) + 0(%) .
2 z

Finally,

;2-1 l;l(1+q)2-1

T cl L+Q2+1

with Q as before. Letting Cl == (20 -1+ 2\13(5 «1)) = -1, one
obtains

LDS m(l+T)+T(2q+§l

+1 (L-17)-7(2Q + Q)

and by setting
b= (1L+7T)/T, a=(1-17T)/1, a.nd.n=2Q+Q2,

he has

2
5'1 b,l-«-g;_‘tzk
iDC-t-l--iDa - Ve

for 1 <<(a,b). By expanding the denominator of this result,
neglecting terms of order (1/23) , and simplifying the result, ome
obtaing finally

2
-1 l1+7 yr 1
mh.-m{l-ﬁ .—+—-—1 -z§

- 1)° (
2?11+T) .z} +0<—§)

The series expansion of w(gz) in descending powers of z 1is a
combination of these results, and

Nix
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W(z)=[%E'&JZ‘:;EZRJZ+1+1%E%(JZ+W)_ l+'1‘] -

NE -1 .
[, V2 T 204 - 1
+2|l—f— A -1+ 1 (F-1) - ( ;EJ
1-7

+ %{;’; (1) I - § (£-1) (38+2) VT + 3y TVE(E-1) (2b41)
4

- ip—1 [‘é L2841 + VE(E1 ')(1-m)+-§!£(£-1)]}

(1 T)

. o<-1-3> . (3.6)

4

Since it is required that a, =b_ =0, it follows from equation (3.5)
that

A = U /T(£-1) (3.7e)

and

Dageig m(VE+ VIS, (3.7)

Using these results and the further requirement that &, = O, one has

P52 3}

Because U, = U (1 + £/2), the sbove relation can be simplified

to give .
£ JE+1 24T
ﬁ'%( VT+1+1'T). (3.8)
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This equation relates the cavitation number =, the cavity length &,
and the wedge semi-angle «a. It is seen to be the same result as that
obtained by Tulin [1] and Wu [18] for an irrotational wedge flow.
In this case the rotationality of the flow has no first order effect
on the cavity length. This same conclusion can be reached by purely
physical reasoning as follows: 1f a first order length effect enters
as K€, then changing the sign of € reverses the first order effect
but simply inverts the flow field. Hence, a contradiction would result
from the presence of a first order length effect. This same reasoning
applies to first-order changes in the drag and cavity area, but not to
changes in the other pressure force coefficients or the cavity shape.

As a result of the above information, the complex perturbation
velocity w(z) may now be written as

o, 13/ 2

w(z) -%;Jl(l-].) [l +FM‘_1 (T + rJ.G-l)] +-%{- —r—
- z

+ 1y NEET)(2802) [1 ; %&ﬁ; £ EDyr. a\ﬂa;f_fm_rzm

. o(ig) . (3.9)

The remaining calculations are based on equations (3.3a) and (3.9).
First, the cavity area and shape are calculated. From Section
2.3, the body-cavity area is

S m - %: n;?w(z)m. (2.15)

The cavity area Ac is

Ac = S - a) (3010)

where it is seen that « is the area of the wedge. Because the
complex velocity w(z) 1is analytic off the slit,
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¢w(z)zdz -¢w(z)zdz,

B+C T
where T is a circle of large radius ([z| + ») surrounding the slit.
The slit and contour path lines are plotted in Figure 6. Applying
the theory of residues, one has

Im¢w(z)zdz = 2,
T
and from equation (3.9)

8.2 = - aUc£3/2/2II.

5 = at3/? (3.11a)
and

A =a(83? . 1), (3.11p)

c

To find the cavity shape, one rewrites equation (2.lla) as

t
yc=a-m[%%’:d€

on the upper cavity surface, and

=t
dz
Yc=-a-1'm;[ !é?'adc

on the lower surface. On the cavity surfaces (see Figure 3a), both §
and z are real and x = z. The cavity ordinate Yo is related to
the cavity abscissa x by determining x as a function of the para-
meter t. The derivative d.z/d.( is found by differentiating equation
(3.1), and
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§ -4 (3.12)

(4 +'1‘) (¢ +R)

The relstions l;i £ -1, Ci =-T, eand 1:2 = -R = -[24 - 1 - 2 4I{I-1)]
have been used to achieve this result. When § is real, the imaginary
part of w({) in equation (3.3a) becomes

ko 2
mmlv()] = - 42 ten™t 3+ § T dule] + AC - ) + DH'
+

Combining the sbove results and using equations (3.7), one has on
the cavity surfaces the following:

a. on the upper surface, t > 1,
t
a b (T QT +JED)  LC-l
ycga-&(l-l)[ [m(c-z)i-n(ﬁ,%’_z.c*&
- L
W€ /n by, -11 -1 . 13a
+m‘7;1:§:'rm z]% (3-13)

(§5+1)"(§"+R)
b. on the lower surface, t < -1,

It ( gp) 2
Y, = =a+ 83(3-1)‘1J [m“ z) _ ke ']ﬁ,'g ‘D'JII 4-1) gfi'
"
w; o - 11]% )

(€°+1)°(§"+ R)
c. from equation (3.1), for |t| >1,

x = zt} - f.(g_-_ll,‘,f_] (3.13¢)

(£541) (t4+R)

Next, the pressure force coefficients are determined. The
pressure coefficient cp was developed in Section 2.3 and is given
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explicitly in Table L; the other coefficients are given in terms of
Cp. From Teble L,

- € .Z._u
Cp = (2+%) [i ﬁ;x + % U”] . (3.14)
On the wedge surfaces, § = e, e upper surface corresponds to the
plus sign in the Cp expression and 0 < 6 < II/2, while the lower
surface corresponds to the minus sign and T/2 < ¢ <II. On the wedge,

0 <x<1l. The combination of equations (3.3a) and (3.7) and the

introduction of § = eie glves the complex velocity on the wedge

ie
Hl.Z-(2+ 2§ [‘n%&'m'i—n(eie-e'w)]’

Simplifying this result and taking the real part produces

E{'JLG)"’E_' 2% %sme-%l:Th(ﬁ+J1-1) tan 6

+§:(1-§e)-(2+z)%zn lf:mgl.

From the wedge flow transformations listed in Table 2,

PEp®--1) s

Since x = Re (z) and £ = ef

some simplification,

on the wedge, one obtains, after

. J c0529 . (3.15)

4 - sin“e
The above results are now introduced into equation (3.1L4) and

x



Cp = (2+E){% (2 + 1) (%“_—-% Ilt:iig g')
[ L-8in® o

2
B-1+3R tmo. (T m):isezre]
(3.16)

The positive sign and 0 < @ < II/2 are used on the upper wedge surface
and the negative sign and I/2 <6 <II on the lower surface. Equations
(3.15) and (3.16) then give the pressure coefficient Cp as a function
of x on the wedge surfaces.

The drag coefficient based on the base width of the wedge is, from
Table L,

Cp = - %a?cpdy. (3.17)

The contour integral W followe a closed, counter-clockwise path on
the wedge surfaces. If equation (3.14) is introduced into (3.17), and

the relationships dy = ;— dx and 2uv = - m(wa) are used, then
c

Cp=- {'ﬁ [m?w?a az + (2+}:)? (: g— x + g)dy:l ,(3.17a)

since dx = dz on the slit. The first quantity in the brackets above
can be written in terms of the contour integration paths shown in
Figure 6 because w is analytic off the slit. Hence,

?wadz -fwadz - éwadz.

The path T 1is a large radius circle, as before; the path C around
the cavity on the slit consists of the cavity walls plus a small circle e
(radius r » 0) which surrounds the point z = 4, On T, w(z) is of
the form




e AR L W s

ib a, + 1b -
wiz) = 52+ 22 o3y, .
z z .
so that
2
b
1 1
w(z)--—-a-+0( 3)
2 z

Thus, by the theory of residues,

¢V2dz = o.

T
The integral over the cavity is given by

2
Im¢w dz = -2 [f (eyc + zum/a)L U dy
c S

+f(€yc + z:u”/a)u ucay] + In J,, .
S -
where Im w2 = -« 2uv on the slit, and J’T is the integral over e, )

The integrals S over the slit are taken on the lower and upper cavity
surfaces respectively as indicated by the subscript on the integrand.
On the cavity €yc = + 'E, on the wedge + €& = eyo = 'Ey/a. It
follows from the definition of a closed contour integral that

agSEyayao and ¢1Edy=o.

W ]
Thus, equation (3.17a) may be simplified to

I

¢y = + &= I(3y/id). (3.27)

In order to evaluate this result, w(z) must be expanded as 2z - §.
Taking equation (3.1) and letting z »> £ gives .



as z > 4.

The expension of w(z) eabout 2z = £ and evaluation of the resulting
integrals over the e path are accomplished in Appendix B. There it
is found that

Iy -Sﬁwadz = 81 1A%4(4 - 1).

e
Introducing this result and the value for A given in equation (3,7a)
into equation (3.1Tb) above gives the drag coefficient

2
a2 + )4
Cp --1‘“1—)-,-_ 0 (3.18)

As expected, this result is precisely that given by Tulin [1] and Wu [18)
for the irrotational flow about a wedge, and the rotation has no first
order effect on the drag.

By utilizing the previously determined results of Table L, the
1ift coefficient CL is found to be

cLa-(2+z)¢%-dx+ (2+z)¢ (%:?-{;-x) ax.
v " W ®

The real part of w(z)dz is equal to udx on the wedge and

% :g:,)u.-sc(!;.fm)..zm,,

v o]

80

) . (3.29)

e

== (2+)Re gS{-’,-dz-(a+z)(
w [}

From equation (3.9) and the theory of residues

f wiz = 2m(1b1),
T
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since a, =0, and b, = %‘Vl(l-l) [1 + %g—— ﬁn(«/ﬂ,\/l:i‘)] .
-1

Recalling that w 1s analytic off the slit, one may write

éﬁm =T95m -Cgﬁm.

Then,

Re¢wdz = 2eVi(E-1) [l + :g N In (WE '+ Vm] - Re¢wdz
W - c

and

Re¢wdz = Re¢wdz + Re¢vdz.
C S e

The contour integral S follows a closed path over that part of the
slit on the x-axis which corresponds to the cavity but excludes the
point z = /. Upon using the fact that Re v = u and u=U7Z/2+ €
on the cavity, it is found that

Re¢wdz=¢udx=-j{€dx+f'€'dx=-2?(l-1).
S S

1 J/
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Furthermore, from Appendix B, one sees that

Refwd.z-o.
e

Using these resulte, equation (3.19) can be put into the form

cL.a(a+z)(§-) {m[u“?‘“-l In (JLJE‘)] %‘:.1-1}

(3.20)

The moment coefficient about the nose of the wedge 1s defined as

L.dist to L ,
3o - (CHORD)Z

. Cno =

positive in the counter-clockwise direction. The contribution due
directly to pressure forces perpendicular to the x-axis is

Crox -éﬁcpxax,

vhile the y-axis contribution is

: Cyoy -¢Cp |ylay= aaﬁcpxdx.
W v
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Hence, the total moment CMo

Cyo = (1 + oF)é]Scp xdx,

but since a2 is of second order it is properly neglected in this
analysis. Again, using the results in Table 4, one has

is

Cyo = (2 + Z)éﬁ%: xdx + (2 + z)‘?s (I % + z/a)xax. (3.21)

The real part of wzdz 1is equal to uxdx on the wedge and

Then,

Re ¢wzdz = -211!)2
T
where from equation (3.9)

D oy LD (MR 0 o]}

(1%-1) (1-T)

As before, one may write

Re ¢wzd.z = -211'3)2 - Re¢vzdz.

w c

¢wzdz = 0,

e
and by using the cavity boundary conditions,

ReSﬁwzdz -Sﬁuxax = -?(jxdx - xdx) = €(£2 - 1).
S S 1

Thus, Re¢wzdz == €(£° - 1).
c

From Appendix B,
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After introducing the sbove into equation (3.21), the moment coefficient
can be simplified to

o - <a+z>(-§-){-xrm Eil(epy 1 + gOBED) (o, AT )]

(T°-1) (1-T) 2
' 11—3-3L21} . (3.22)

Finally, one must calculate the value of the parameter E/Un and
introduce it into the basic results. From Table 5,

)/ )/
A
= Yy ax + Yy dx >.
ﬁ;my{l cL : c'U
In Section 2.3, it was noted that the quantity in the curly brackets

is the cavity area Ac. Substituting the value of Ac from equation
(3.11b) into the above equation yields

< 3/2
T = e (3.23)

8!

Equation (3.23) is now introduced into the previously obtained results.

3.1.3. Discussion

The results of the linearized analysis, which are summarigzed in
Table 6, depend on the independent veriables Z(or £), @, and relative
vorticity G/U“. Equation (3.8) gives I explicitly as a function of
4 for fixed «. Numerical results, together with computation programs,
are tabulated in Appendix F. Certain portions of these results have
been plotted to illustrate the theory.

As predicted earlier, the cavity length - cavitation number
relation, the cavity area, and the drag coefficient are independent of
the relative vorticity c/u.. On the other hand, the 1ift and moment
coefficients depend linearly on €/U ; both coefficients are, of course,
zero in the irrotational, parallel flow past a wedge. For reference,
Figures 7 and 8 show the drag coefficient Cp, and cavity area A, as
functions of Z, even though they are the same as those found in an
irrotational flow. The /- I relationship is plotted on Figures 16
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and 17; the curve for asymmetric shear flow is the curve labelled

%— = 0, i.e., the irrotational flow. For this case, Wu [18] has showmn

that in the linearized theory, £ is limited to
1+%(1+%£n§—n)<t<u.

Those results which are directly affected by vorticity are plotted
in Figures 9 through 15. The first figure shows €/€ as a function
of Z. The next is a plot of a typical cavity shape which shows a
definite dependence on the relative vorticity. The two vorticity
terms in equations (3.13) account for the airfoil shape of the cavity.
The second, or logarithmic, term becomes large only near the end of
the cavity and tends to pull the cavity end downward.

The key results of the theory are the pressure, 1lift, and moment
coefficients. Since the latter two are linear in €/U , Figures 11 end
12 are plotted with CL/(C-:/U”) and CMO/(G/U.) as functions of I
for various a's. The increase of both coefficients with (a) decreasing
cavitation number, (b) increasing wedge angle, and (c) increasing
relative vorticity is clearly seen. As I approaches gero, the
cavity becomes infinitely long and the magnitudes of the lift and
moment coefficients approach infinity. Tsien [12] found that this
behavior also occurs in shear flow about an infinitely long, solid
body. The pressure coefficient Cp is presented in Figures 13 and 1.
The positive 1lift found above is represented here by the area between
corresponding curves. On the upper wedge surface near the nose, the
pressure coefficient of the linearized flow exhibits a large negative
value. This phenomenon is associated with the high velocities required
for the fluid to twrn about the sharp nose point in the equivalent
nonlinearized flow; here, the stagnation point on the wedge is below
the x-axis and behind the nose. In a real flow a small cavity may
occur on the upper surface at the nose. Such a cavity has been observed
in experiments with wedges at a smell angle of incidence [7, Chap. 12,
Pt. 2, Fig. 12 II.13, p.33) vhere the flow patterns are essentially
equivalent to those of the present rotational flow. Figure 15, the
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final figure in the series, shows the distance X of the center of
1ift from the nose of the wedge.

3.2. Symmetric Flow Past a Wedge
The undisturbed velocity profile of the supercavitating flow is

shown in Figure 1 (dotted line profile) and agein in Figure 4. The
notation, which was introduced in Section 2, is shown on Figures 4 and 5.
Note that Poisson's equation Vav = € holds for y > 0, but Vzv = =€
holds for y < 0, contrary to the asymmetric case. This change is, of
course, due to the discontinuity in the vorticity at y = 0.

3.2.1. Solution of the boundary value problem

It 1s necessary to reformulate the wedge boundary value problem
outlined in Table 1 because of the symmetric shear velocity profile
at infinity. However, the same conformal mappings as were used in
Section 3.1 may be used here.

In Section 2.1, the rotational flow was reduced to a harmonic
or irrotational flow by introducing the stresm function v, = 6y2/2.
In the case of the symmetric flow, it is necessary to use the function

2
Yoy = /2, ¥y>0

and the function

2
VPL"‘Y /29 y<o.

Then, one has as desired

8. for y>0: Vy, =6, Up = -6y
b. for y < O: Vevpnﬁ, Up = +€y.

The remainder of the development in Section 2 is unchanged.

By comparing Figures 2 and 3a to Figure L, one can see that the
boundary conditions in the symmetric flow are (a) the same on the
upper and lower surfaces and (b) the same as those for the upper surface
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of the wedge in the asymmetric flow. The new boundary conditions on
the slit and mapped planes are shown in Figure 5. The mapping (3.1)
gives z as a function of { as before. The boundary value problem
for symmetric flow in terms of the complex perturbation velocity

W = u=-iv is the same as that given for the wedge flow in Table 1,
except that condition (b) becomes Real (w) = U £/2 + € 1<x<}§,
y = 0. Note that in the symmetric flow,

P, - Pc
%on

It is seen from equation (3.3) that the function

T =mo =

20U
W(E) = - S dn pEE 4 AL - 1/8) 4 Uo/2 + (3.24)

satisfies the differential equation and conditions (a), (b), (c), (4),
(g), and (h) of the revised boundary value problem. As before,

the remaining conditions will serve to determine A and a relation
between L/ and o for fixed € and a.

3.2.2. Resgults

The function w({) can be expanded in descending powers of z as
z > ©., The series has the form shown in equation (3.4); the boundary
conditions (e) and (f) require that a,=b, =a =0. By using
equations (3.5) and (3.6) of Section 3.1.2, one has

w(z) = [(Ua/a)a,e-Tznji‘l aAJ']+-[ I-A(Ll)'/-]

+ -é [ (e WT - § (#1) (3£+1)./"]+ 0(3:5) o

It follows that




Ueo
T (nn:f__*i ""J—)+-%-+'E-o.

Immediately, the relation between a, 0, €, and £ 1is found to be

| oA G
[‘&n e M = 32+05U” (3.26)
The effect of positive vorticity is to shorten the cavity for fixed o.
The complex velocity w(z) can now be written as

w(z) = - ?(o—”-";;f) + °('1;3) : (3.27)

The remaining calculations are based on equations (3.24) and (3.27).
Note that in this case the cavity remains symmetric in shape and,
since the flow is symmetric, no lift or moments can be expected. The
qQuantities of interest, then, are the cavity shape, cavity area, and
the pressure and drag coefficients. Because the flow is symmetric,
only the upper wedge surface Cp and upper cavity shape y_ (x) need
be calculated.

The cavity area and shape are found first. From Section 2.3,
the body-cavity area is

S=hA +a=- %- Im¢w(z)zdz. (2.15a)

¢ B
The function Ac is the cavity area and O is the area of the wedge.
Using the contour paths in Figure 6 and the analyticity of w(z) off

the s8lit leads to
¢\mlz -¢v(z)m.
B+C 7

From equation (3.27) and the theory of residues, one has

IngSwzdz .- wcﬁ/a.
B+C
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Thus, 8 = ot3/? (3.28a)
and A =a($/2 1), (3.28b)

Since a positive vorticity shortens the cavity length £ for a fixed
o, the area Ac is reduced also. The cavity shape is easily found
by use of equation (2.14a) and several results from Section 3.1.

From equation (3.24), the imaginary part of w(f) 1is

homc -1
In [w<c)] - - oS tanl 4 A - 1/0),
when { 1is real (on the upper cavity surface). From equation (2.1lka),
t
-a- w(g) dz
yc o Imf[ Uc z d;

Introducing the sbove into this result, together with equation (3.12),

gives

t
rora- [ g vt G0 o2
1

(E7+T)7(E7+R)

(3.292)
As before, x 1is given as a function of the parameter t Dby
- [ _’ﬂﬂ)}_] (3.13¢)
(t +T)(t +R)
T =24 - 1+ 2NF(F-1)
and R =28-1-2¥%(21).

Although the vorticity parameter 'E/U“ does not enter explicitly in
the above equations, its effect is felt through the change of } for
a given o due to vorticity [see equation (3.26)].

Next, the pressure and drag coefficients are determined. The
pressure coefficient Cp is given by




as before. Following the same procedures as in Section 2.3, one is
lead to the result that

p=(2+o)[(;)x+a/2-u/U], 0<x<1l. (3.30)

Since in this case Cp is symmetric with respect to the x-axis,
equation (3.30) is valid on both upper and lower wedge surfaces.

From the similar calculations ir Section 3.1.2, it follows immediately
that on the upper wedge surface,

u(6 w(e c. € af2+) | sin 6 |At8106
—é:)-gRe('é‘:)') =§+u;--‘rl[m lsinel]
and
2 2
x = 4 cos“6/(£-81in") (3.31)
for 0< 6 <1T/2. Thus, equation (3.30) can be written in the form
Cp = (2+0) {(%:) (x-1) +§ (2+0') 8in 6 , fn |l+sin9]}
0<e<If2. (3.3)
The drag coefficlent Cp for a wedge 1is given in Table 4 as
--i gSc ay
c]3 x pV’
W

Utilizing the relationships developed in Section 3.1.2, one has, after
allowing for the present symmetry of the boundary conditions,

I ! ﬁ _; g ].
Cp E[I-wftfdz-b(aw)j( v;x+§)d,y

It follows immediately from the analytic character of w and equation

(3.27) that
mgswaaz - nSﬁvau,
W c
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since by the theory of residues

Sﬁwzdz = 0. .

T .
The integral over the cavity is given by ;

ugswaz=-{ﬁely | +Uc/2),uvdy+f(ely | +Uc/2)Udy} ngswdz,

where Im w = =2uv on the slit. On the cavity €|y | = 6 end on
the wedge €x = €|y°| €lyl/a. Thus,

Gely, lay = TP xay = £ Iyley - o,
w W

W
and
ygelycldy =39§dw = 0.
S S .
Furthermore, from the cavity closure requirement, § dy = O, with .
W+C -
the contour integral W+C being taken over the wedge-cavity combination. .

Hence, one obtains

1 2
CD = — Infw dz.
o e

It is again necessary to expand w(z) about 2z = 4. Comparing
equations (3.3a) and (3.24a), one sees that equation (B.1l) in Appendix B

becomes

w(z)-»-2—+€-

Vo - %\&(l—l).
N/ 3

From this result, it follows that

2 -
%w dz = JT. )

e

- U} «



Using the value of J

m found in Appendix B plus the velue of A found

2
CD = %—&I’a-’.q al . (3‘33)

This 1s formally the same equation found in the irrotational case;
however the cavity length £ in equation (3.33) is altered by a first
order vorticity effect. This alteration of £/ causes a displacement
of the curves of CD
In order to define a value for € to complete the solution of
the symmetric problem, one must resort to physical and mathematical
intuition. Since the circulation I' is identically zero about the
cavity in the symmetric flow, one cannot use the method of matching

previously, one has

versus o.

circulations which was so successful in Section 3.1.2. However,

since € is to be a representative value of Glyc over the whole

cavity, it is reasonable to choose

T () (D)%, oo

i.e., the mathematical average value.

3.2.3. Discussion

The results of the symmetric flow analysis are summeriged in
Table 7. Appendix F lists the numerical computations which have been
carried out by using the equations in Table 7. Three important results
are presented in graphical form in Figures 16 through 19.

First, the cavitation number o is plotted as a function of
cavity length £ in Figures 16 and 17. It is evident that a positive
vorticity € causes a reduction in the cavity length for fixed values
of 0. Although the cavity length is infinite when o+ 0 in an
irrotational flow (€ = 0), there is a maximm £ corresponding to
each value of the relative vorticity C/U. >0 1in a rotational flow.
When €/U <0, the solution to the problem is no longer unique.

Then, as seen in Figures 16 and 17 or in the tabulated data, there
existe a minimm o for each value of €/U < O. For each o greater
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than the minimum value, there are two possible cavity lengths - the .
conjugate lengths., When o 1is less than the minimum value, no
solutions exist to the linearized problem. When two solutions exist,
both satisfy all imposed boundary conditions and produce physically
reasonable drag coefficients and cavity shapes (see Figures 18 and 19).
In spite of the large vorticity effects, the lower 1limit on the cavity
length still seems to be that value determined for irrotational flow
(see Section 3.1.3) and denoted by 1 + &% (1 +§ 208 §—n)< 4.

Second, the drag coefficient CD is given as a function of o
and o for two values of €/U  in Figure 18. A comparison of this
figure with Figure 7 shows that when the vorticity is positive, the
values of CD for fixed a and ¢ are slightly increased over the
corresponding irrotational values. However, wvhen € < 0, the drag
coefficient is reduced and the CD curves in Figure 18 lie below
the comparable curves in Figure 7. One should note the reappearance
of a minimum cavitation number for € < 0 and the two possible CD
values for each ¢ above the minimum.

Finally, Figure 19 shows the shapes of the cavities trailing
behind a wedge when the cavitation number is fixed and S/er is
varied. The two longest cavities shown are the conjugate length
cavities for G/U“ = - 0.080.

3.3 Asymmetric Flow Past & Hydrofoil
The final problem considered is a parallel, uniform shear flow

past a supercavitating flat-plate hydrofoil. The unit length hydrofoil
is placed at an angle & with the x-axis (as shown in Figure 1).

The development, based on the methods outlined in Section 2, closely
follows Parkin's solution of linearized cavity flow past a hydrofoil in
a 1iquid with gravity (4). The similarity between the present case

and the gravity flow problem will be evident. In fact, the basic
boundary value problems for the two flows differ only by a change in
sign of the perturbation parsmeter, i.e., €/U_ = - u/U,, vhere u/U,
represents Parkin's gravity parameter.




3.3.1. Solution of the boundary value problem

As before, the conformal mapping technique is used to solve the
boundary value problem given in Table 1. The transformations are
listed in Table 2; in Figure 3b the slit g-plane and transformed planes,
together with corresponding boundary conditions, are shown.

The solution w({) is constructed from the singularities in
Table 3. By comparing the form of the boundary conditions and the
available singularities, one can see that w({) should have the form

v({) = 1A (C-%) +iB + iCn { + 1:1:’1 + E. (3.35)

The boundary conditions in Table 1 are applied to equation (3.35) to
determine the real constants. In sumery, this leads to the following:

a. Re(w) =UZ/2+€ for { real and >1, so that
E=UZ/2+F,

b. Re (W) =UZ/2-€ for { real and <=1, so that
- IC+E = U T/2 - € and C = 2€/I

c. Im(w) = +U,  for { on the unit semi-circle, so that
-3+B=alU and B=oU +3.

d. w(z) >0 as z > -w., In the Q-plane, as z > «,
Q-+ ik with k = YI<1, as before.

Equation (3.35) becomes
w(e) = 1a(8-1/8) + 100 + 5t ¢

+ 1D (% R zﬁ) +UZ2 4T (3.35)
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In this form, w satisfies the differential equation and all boundary
conditions except (e) and (f) in Table 1. These remaining boundary
conditions allovw determination of A and D and development of

a cavitation-number - cavity-length relationship.

Following Parkin [4], one completes the solution of the problem
in the Q-plane (see Figure 3b). From condition (f) and item 4 above,
w(z) >0 as 2z - -w, while in the Q-plane, Q > ik a8 z -+ =w,
Equation (3.35a) may then be written in terms of Q, and Q must be
allowed to approach ik, where w(Q) approaches 0. In accordance
with the transformations of Table 2,

’-&Q + 2= c + l/;}
hence,
£ =1+ 2Q+ 2¥a(en). (3.36)

The negative root is chosen for Q real and < - 1; otherwise, the
positive root is appropriate. When Q = ik,

£ =21k + 1 + 2f1k-k.

Letting r = w-hl + ‘Wﬁ-l and s =Vﬁ+?-vml, one obtains from

equation (3.35a) and the above

14K & + 1(2x+YK 1)
+ 1D(3 + (x s+19i r]'1)+1(2?/n)[n[(1+ﬁ s)2 4 (2x +4F r)2)

w(ik)=iA[l+ﬁ"s+i(2k+V?r)- 1 ]+1auc

- (2¥/1) tan™! ?ﬁgf— +Uz/2+T 0, (3.37)

1+%ks

Ietting A = A QU.° and D = DOU' as Parkin does, one obtains two
equations for Ao and Do from the real and imaginary parts of equation
(3.37). These are
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Mer-ﬁno-(%:) (1-§tan'1 [—i—‘i:f-ig;ﬁ] )-g

and

/K BA_ + ﬁﬁ'DO = - %— {ﬁ I [(1 +‘V'1?s)2 + (2k +4X¥ r)2]} - a(1+z/2).

The equations are solved simultaneously to yleld
1 €
e[ E
. r{_ [ _ 2 taa (2k +4§'r }] (3. 36a)

o 1 +4kKs

D =17 [{v- l-nt (iff.r)] +§} +r{-ﬂ-nln[(l+ﬁs)
+ (2k+4_‘r)] +a1+-§ }] (3.380)

In the Q-plane, using equation (3.36) , the complex perturbation velocity
is

= 1o

I[(1MF )2 + (2x+VE r)?) - @ (1 + é)}

(= 1]

w(Q)/u_ = 1hA°V5(Q+1) + 1D Q+1)/Q/2 + 1a(1+Z/21E/2
+ T+ 15§ do De2w2 RG], (3.39)

The remaining condition (e) is the closure condition. As noted
previously, if the cavity is to close, the net strength of sources
within the cavity must equal gzero. It is equivalent to require that
w(z) have no real residue within an infinitely large circle T
(see Figure 6) surrounding the cevity, i.e.,

mPv(z)as = o.
T
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Because w(z) 1s harmonic off the slit in the 2=-plane, it followse that

mﬁw(z)az -o0, (3.40)
B+C

with B+C the boundary of the foil-cavity system. Thus, in the Q-plane,
the closure integral Ic is

I =95w(q) & . (3.41)
B+C
The foil-cavity system extends from -« to +» in the Q-plane, This
integral 1s evaluated in the classical manner by using a semi-circle
of radius R in the upper half plane to form a closed contour CR
One has, from the given transforms,

%’5 = 202 (k% + @)~2Q. (3.42)
Thus,
fw(Q)% dQ+0 asR»>=»
QR
and
2 w Q
I, = 24K f (—kégi%é-)-a- = -2lli (Residues within cR). (3.41a)

-0
The minus signs account for the reversal of the line integral orienta-
tion in the Q-plane. The only residue within CR occurs at the

second order pole Q = ik. The residue b, at the pole is given by [21)

bl'%%m

since w(ik) = 0. The introduction of equation (3.39) into equation
(3.43) and the use of the subsequent result give

hiti] - -
I - 'B:g 6(161;21\0@ .) - 8kr(A°+%[ %;) -1 [eka (A°+ iﬁ;) + r(16k2A°+D°$ .

(3.44)

1

Q= ik’ (3.43)
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From equations (3.40) and (3.41), it follows that
8ks(Ao + i %; )+ r(16k2A° + Do) =0

for closure. By introducing the values of the constants Ao and Do’
one derives

2 -
kst 2kr (s{ﬁﬁ; Inl(1+9% s)2 + (2xH¥ r)2] +Q (l%}

Vi
e rd & (1.2 foql ZWETY | = Bks€ _ € -1 2k r
{U”(l-ntan 1+ﬁ's)+2}) { e 1.+’Ee:]
+ g} + r{fm- In [(14E 8)2 + (2x4E r)?) + a(u-g)}) - 0. (3.45)

3.3.2. Results

In the previous Section 3.3.1, the basic solution w(Q) and a
relation (equation (3.45)) between the problem parameters "c'/U”,
£, z, and a were found. Based on this information, the cavity
characteristics -- length (closure condition), area, and shape --
may be found. In turn, one cen determine the pressure force coefficients
and, finslly, the vorticity parameter ?/u“.

Upon simplification, equation (3.45) yields the closure condition

1+1K s

-%]} (3.46)

As ('a/U“) <+ 0, this equation reduces to Tulin's condition for closure
in the irrotational case (6], i.e.,

o ‘ETE mm— In[(1+Y% l) + (2x+% r) ] - [kﬂ(l—% tan~t Ek;'ﬂ!i)

kZ
=D
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with L =0 when €/U =0. When €/U is not zero, e positive €/U_
produces a lengthening of the cavity over the irrotational case for
fixed a and Z.

The cavity shape is found by integrating equation (2.1lka) from
the appropriate point on the hydrofoil, i.e., the leading or trailing
edge. By employing the previously determined relation for dz/dQ and
the fact that z and Q are real on the cavity, one can integrate
equation (2.14a) directly in the Q-plane. For real Q,

Im %: = uAOVQ(Q+1)' + DOV-(S.'%).ZQ + a(%§)+ ]2[%; In |1+ 2Q * 2VQ1Q+1H ;

on the upper and lower cavity surfaces respectively. It follows that

a. on the upper cavity surface, for q > 0O and real,

ycg—atrzjg[h!\ QE +—'Q( +?(2+2)
+ Tlﬁ" Unl1+2Q + 2¥Q( 1)]79;-5 «(3.47a)

b. on the lower surface, for q > 1 and real,

Y

19=-%+2+2f[1m Qﬁ_"-rﬁ'_')'-§ (22
- ¢ znll-aq-zml]

(x“+Q°)
(3.470)

By use of the tabulated integrals from Appendix C, these equations
may be written as

%__-ux { I 2%’.3%9..5.} (3.48a)

k“+q°)

e




on the upper surface and

Y, o bl D 2T a(2+£) (g°-1
-zg--z+m<hAoIh-—°;-WwIs-;'§(?)f.1?;l (3-h8b)

on the lower cavity surface. The value of x for a corresponding ¢
is found by integrating equation (3.42) and is given by

Z _. (3.49)
(x° + )

Since the cavity and body-cavity areas are the same, the cavity
area A, 1s [from equation (2.15a))

X
1:

2 wiz
Ac = - 57 Im§ A zdz.
CAV
The contour integral is again evaluated in the Q-plane, where

P e - cf R s

As before, the theory of residues is applied. The only pole in the
region is the third-order pole at Q = ik; the residue there is given

by [21]
k2£2 d.2 [wgglg3]
b, =
1 -U;_ d_Qé (Q+ix) Q= ik -

This equation is reduced in Appendix D. The imaginary part of the
result is

A, = Hﬁ: [hAo[k(‘*k2+5)r + (2x® +1)8) - ;2 [(ak-o-i-) r-s} - g (kr-s)] ’

(3.50)

with A  and D given by equations (3.38).
The calculation of pressure force coefficients depends on the

evaluation of the pressure coefficient, which represents the difference

. e S s s 3



between the pressure p on the lower surface of the hydrofoll and

the cavity pressure p, on the upper surface. These relationships
were defined in Section 2.3 and tabulated in Teble 4. From that table,

cp=-(2+z)(§-':x+%:-§). (3.51)

In the Q-plane the lower side of the foil is represented by Q = ¢

0<&<1l. Also, u/U =Real (w/U).
and equation (3.39), one has

D -
le 2€ -
.l.IE = - qu‘v'g(l-g) + r° V—f LA ten

eh

)

Using the above relations

1D, 3, T
1-2¢ 2.

Since z = £Q°/(k°+Q%), then x = ££2/(xk°+t%) on the hydrofoil, and

Cp can be written as
D
C, = - (2+z) {-hAOVg(l-g) + EQVL?
- 2
€ 2 2 <1f2
+ = |1 + —_— . tan (
U, [ Ko bt 1-

with ta.n'l( ) <@L

The normal force coefficient CN

ﬂi—_%i)}} , 058<1, (3.52)

is given directly by integration

of Cp over the foil. Thus, from Table 4,

ca = [ o

o
and, from equation (3.51),

cN.-Eg-él(%;-z+2fE£u). (3.53)
o

The integral in this equation can be written in terms of a contour
integral around the hydrofoil-cavity system, i.e.,

f%—dxsne¢-g—dz-f%-dx- %‘d’"
o = B+ ” 1 °
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A comparison of the velocity functions used in the hydrofoil and wedge
flows, together with the results of Appendix B, show that there is no
contribution to the normal force from the integral of w around the
end of the cavity. This is also true for the integral wz about the
end of the cavity. Since u/U = Z/2 + €/U on the upper and lover
cavity surfaces respectively, one obtains

u w(Q) dz L. €
fﬁ;dstealﬁ—é:)'mdQ*‘é*ﬁ:(al'l)'
o) B+C

The introduction of this result and equation (3.41) into equation (3.53)
produces

€ 4Ll
Cy = -(2+L) [U—“ -+ Re(Ic/U“)] .
The final form for CN is obtained by substituting the value of Ic

from equation (3.4l4) and the values of the constants A, and D into
this result. After some manipulation, one has

Cy =% (2+z) (k) [ok(a+}:) +Z+ %E{ﬁ ln[(lJi'.)2+(2x+'&‘ r)?]

2, -12fcr 21@:-&3-1}]
o1t BORE IR
(3.54)

vhere from Table 4, C; = Cy, C, =o€, snd D/L=a.
The moment coefficient CMO about the leading edge of the hydrofoil

is, from Tahle L,
C“o -fcpxdx.

o
When cp is introduced into this result, one derives

Cyo = - (242) [35.: - +fl§: m] : (3.55)
(o]
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As before, the integral on the foil is transformed into a contour inte-
gral with the result that

- z -
[‘I}—wxdx=R;f;—“ zdz -]f(é-%-.)xdx-f(%:+;—}hdx.

[ ©
o

Thus,

Cyp = -(2+E)[ (3 g-‘t;'—) +R;?!é§la’%§®] .

The integral in this equation has been evaluated in Appendix D in
connection with determination of the cavity area Ac. Taking the
real part of that result and introducing it into the above equation
produces

=+ (2+Z‘.){ 17'—1-1] [l&Ao([6l-1]r- [124+1]xs)
+ .é_ (r-L2k + {] ) + ﬁg- ([ux +5]r+ks)]} .

After minor re-arrangement, the moment coefficient has the form

Cyo = (2+z:){% [@ ([48+1)r+ks)-£2 + %]

+ 3/ 74 [hAo . ([64-1)r-[124+1)ks)+ % (r- [21: + %] s)]}

(3.56)
Finally one determines the vorticity parameter ?/U From Table 5,

m{fly | ax+f|y ).

It has been noted that this result can be written directly as

c:' ol

< e(Ac-a/a) e(A -a/2)

T U ED " -—(;-krﬂ-). (3.57)

where k = 4/-1. Recalling equation (3.50) which gives A,, one can
see that €/U may be found directly. This calculation involves
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solving a quadratic relation obtained by combining equations (3.50)
and (3.57) and using equation (3.46), the closure condition, to
eliminate ZX. The result obtained is

- -kX, +(k-a)X
€ € L 3
TJ:':WT_-IU“{ ;i to + X

~kX) + (k-Q)X hoX

+ 2 L

(<) + oacl+x2] +-g (le+X2)} (3.58)
in terms of the notation introduced in Appendix E. For € < O, the
minus sign is taken to preserve the form of E/U“. This is required
because X, < O when € < 0. With €/U_ Inown explicitly as e function
of €/u_, f(orZ), end «a, the solution is complete.

3.3.3. Discussion

The solution to the hydrofoil problem is summarized in Table 8.
Appendix F lists a sample of the numerical computetions carried out
by using the equations in that table. The results are presented
graphically in Figures 20 through 30.

The cavity length £ is plotted as a function of cavitation
number I for two values of the attack angle Q in Figures 20 and
21. The effect of vorticity in the flow is clearly seen; for a given
Z the cavity is lengthened by positive vorticity. In Figure 22,
the effect of vorticity on the size of the vorticity parameter ?/Ua
is shown. A typical cavity shape is plotted in Figure 23. The
effect of positive vorticity is an increase in the cavity width and
the cavitation number for a fixed cavity length. In contrast, Parkin [4]
found that cavities effected by a transverse gravity field lie inside
the corresponding gravity-free cavity.

The normal force and moment coefficients are pictured in Figures
24 through 27. (Recall that Cp = Cy and Cp = wn.) The coefficients
are plotted versus £ in Figures 24 and 26 for a relative vorticity
G/U‘1° = 0.04. As the cavitation number approaches gero, both sets of
curves turn upward and increase rapidly. This rapid increase in lift
and moment as the cavity becomes infinite in length is consistent with
the results of Tsien's investigations of shesr flows [12] and the

- 57 -




results of Section 3.1 (see Figures 1l and 12 and discussion on Page 37).
Figures 25 and 27 show Cy and Cp, as functions of /U . Generally,
both increase as G/U“ increases; howvever, the increase becomes
pronounced only as I becomes small. The variation of the location
of the center of 1lift as a function of I and G/U“ is given in
Figure 28.

Two sets of typical pressure coefficients are presented in Figures
29 and 30. The first shows the effect of vorticity on CP at constant
cavity length. The second shows the effect of the cavitation number I
on Cp, when the angle of attack and vorticity are held constant. In
this shear flow theory no pathological cases (i.e., cases in which
C‘,p turns sharply downward) are found which would compare to those
experienced by Parkin's gravity theory. The reason for this difference
is that the change in sign of the coefficient D (Parkin's Ao), vhich
causes negative lift in the gravity case, doesn't occur in the present
problem because the perturbation parameter i/U“ differs from Parkin's
gravity parameter u/U by e minus sign. Thus, while a strong gravity
influence causes negative lift, a strong vorticity increases the lift.

Finally, from Figures 20 and 21 and the tabulated data it is seen
that when €/U_ > 0, the problem solution is not unique. There is a
minimm Z for each value of €/U > 0. When I 1is greater than the
minimum value, there are two possible cavity lengths- conjugate lengths;
wvhen 2 1is less than the minimum value, no solutions exist to the
problem. As in the case of symmetric flow past a wedge, when the two
solutions do exist, they both satisfy all conditions of the problem
and produce physically reasonable pressure force coefficients.

“n ,«i}mi‘mﬁ



4. CONCLUDING REMARKS

In Section 3 the linearized theory has been applied to three
rotational, supercavitating flows. From these applications it may
be concluded that the effects of rotation (vorticity) are significant
whenever the magnitude of the relative vorticity G/U“ is greater
than 0.02. Experimentally, the vorticity effects are most likely
to be detected in measurements of 1lift and moment. In the cases of
symmetric shear flow with negative vorticity and uniform shear flow
past hydrofoils with positive vorticity, further analysis and experi-
mentation will be required to determine (a) if the non-unique solutions
found in Sections 3.2 and 3.3 do occur and (b) if the cavity might
tend to oscillate between the conjugate lengths and hence cause some
dynamic effects.

In the uniform shear flow about wedges and flat-plate hydrofoils,
the positive rotation has been shown to cause an increase in 1ift and
moment forces. In hydrofoil flows an attendant increase in the drag
can be expected. It is also important to recall the large increase
in the size of vorticity effects which occur as the cavity lengthens.
The work of Parkin and others on associated problems suggests that the
present linearized theory may over-estimate the vorticity effects
when the cavity is extremely long; however, the theory gives no
indication of failure in these regions. But, as the cavity length
approaches infinity, the 1lift and moment coefficients do become
infinite. On the other hand, in the symmetric flow, the cavitation
number and cavity length as well as the effects of vorticity were
generally found to be bounded.

The present application is limited in several ways. The wedge
half-angles and the hydrofoil attack angles are bounded by the upper
limits associated with the basic linearized theory. Chen [2] notes
that the linear theory predicts the force coefficients with an error
of 8 percent for a flat-plate hydrofoil at 5 degrees incidence and an
error of 5 percent for a symmetric wedge of 15 degrees included angle.
Finally, there is the method of determining the vorticity effect.

The method chosen is arbitrary to be sure, but its value lies in the
fact that the method (a) permits a comparitively simple solution of
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an otherwise difficult problem and (b) accounts s in general, for the
over-all vorticity effects rather than the effects at one particular
point in the flow. A specific objection which may be raised is that
the present theory cannot be extended directly to the second order
because of the averaging technique which is used. It is anticipated
that the present method can be refined in future analyses and also
extended to more general rotational flows.
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APPENDIX A
Solution of the 8 Integral Equation

The solution of the singular integral equation of the first kind

2
[Eé‘é)gg'ﬁ--f(x),lsxsl, (A-1)

is accomplished by reducing the integral equation to one of known
type by a change of variables. Let

2(¢s-1 2(x=1
t=—E1—l-l and r--—i:—)-1 -1,

so that
ag = L‘? dt, dx = 5%1-)- ar
£ = [(2-1)(t+1) +2], x = 2[(L-1)(x+1) +2].
Then,

p(e) > g (t) ana ¢ (x) » £ (r),

while equation (A-1) becomes

,1,)[2:%{32 - ¥ ). (a-2)

This equation occurs in theory of airfoil motion and is often called
the "airfoil equation."” Note that improper integrals must be taken
wvith their Cauchy principal value. The solution to (A-2) is provided
by Tricomi [22]; it is

#(r) = W]:?:Z

‘{;fi ¥ (t)as + —S (a-3)

>
p r2
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where 3/ J;.---r2 represents the non-trivial solutions of the homogeneous
equation

t-r

_ZM.O.

The solution to (A-2) is, as expected, non-unique; the constant 3
is determined by the condition of smooth separation at the tralling
edge of the wedge. Returning to the original variables,

£
.. 1 A2 (e-2) -y
b(2) o - | [MEQG ¢ (e 1o, 1ok

where C has replaced 23'/1[2 (£-1) to achieve the desired form.
For u(x) to remain finite at x =1,

L
c .[V.(i'.ng.(.ﬁ:}.l £ (s)as.

Thus, the distribution function i can be written as

! 4
X -
0 - o T e e -

- 62 -



APPENDIX B
Expansions at _z = J

In order to calculate the pressure force coefficients in a wedge
flow, it is necessary to expand the complex perturbation velocity
about z = £ and to calculate contour integrals over the circle e
(see Figure 6). The velocity w(z) becomes . ' ;

w(z) » % - 2—“@ + 1D + 1% €t 2Y2(4-1) - In¥z-£) (ﬁii)

as z > £ because, in equation (3.3a),

a. c-».?@, |(|->u

”’-!
2
b. =L, 4
{5+l
-\ 1U5Y)
. (L-p)>- T + o(fz-D)

Thus, w(z) may be written as

w(z)+K-@-i§§hm (8-2)

vhere from above K = O0(c, €). From equation (B-2)

2
2 bACH(L1) LT 2 uxAYE(A-L
v (z)=x2+7=._.‘r-l-?(ln'lz'-7) -—z—!DTT

- 4 o o7 BB ":H»am
T=

(B-3)
integtls vhich occur in the linearized theory sre of the

form wdz, U wede, wadz. Since only singular terms may contribute

to suck contSur inteénls , one needs to evaluate contour integrals
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J 4 for the following singular functions:
& £ =Vz- 2
b, £, =ta¥z- 0
c. fy= Mz - £
a f, =z inAz- T
e. £ = (n¥z - L))z - £

2

f. fsﬂ(hl Z -

1
g f7 -m

i6 i6

Near z =4, z~- A4 =re’” and z=re  + £, where r+>0 as z-> L.

Then, dz = ueiede on e and an integral J 1 is given by

I
16y .16
Iy -SBridz = lim, uffi (re™”) e a0,
e -l

All integrals of the form
I
E - j ,(e29, 6)as
-1
are finite and 1if

t
J, = ljm r E, t >0,

then such .]’1 =0,

Introducing the above notation into the ¢
corresponding J:l gives

1 and writing the

1/2 [ _16/2
Qe Jl-rlair f‘ ds-o.
-1
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I I
1/2 [ 18 r 16
b, J, = lm ir Mo fe d.a-rl_;mo§fee de = 0
<1 =1L
t
since lim, r Inr’ =0 for any finite t.
I

3/2 136/2
c. J3=r1_;m01r fe de+zJ1=o.

1T / II 2 I
_ 2 1/2 210 r
d. Ju-rlj;moir Inr fe de-rl$mo—2fee

as + 43
I I =1
e. .J'5=rl_1;mo irl/2 In rl/afeie/ade=0
=II
since 1lim, rl/2 In rl/2 = 0,
IT
£, I, =1 1f(tn 1/2y2 | 4 gn /2 o° 1990
. 6'r-1m0 r r r ol e .
=11

Since all other terms go immediately to zero, one has

Jg =1 Agm (I £1/2)2 rf e1f ap.
-1

By L'Hospital's Rule

and

J

. =55w2az = 21 (4A%L(£-1)). (B-4)

e
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APPENDIX C
S of Cavity Shape Integrals

The results listed below and the accompanying definition of terms
are summarized from reference [L4]. Appropriate changes of notation
have been made to make the results compatible with this development.
The new terms defined are as follows:

o = W1 = Ya(L-1), B, = -VQ%“_, B, = -VQ%L,

1 1 1 1 2
7, == (kB, +38,), 7, == (xB, -58,), 8 = and 8, = .
17 @ Vre 2R 72 a? 1" 2P %) ‘2'“2 2 2—:»5
One then has
‘/g (x +Q) 2(k° +q!) > 5. 2
1 72 ) (I7,0+8, Va(ar1)1® + [7,048,1°)K
+ n
NE (2+) (52422)
27 7,448, T . 1%

+

.

tan™t ! + tan~t -=
[ 71Q+51-ﬁ(q+1) 2 8;

fﬁ‘%

71q-°1dqzq+1 ]2+[72q+52] )X
(qeK 2)(6 3

g 7q+5 b
2 -1k 2 2 =1

+ =3 tan -+ta.n -tan” 8‘ »
2@ ! 7,943, -Wle+1]) 2




f fn|1+2Q+2Ya(QrL)
(x° + Q) \ o s
n[l+23+279$9 21 1 { B, In [( [7lq+8 16(q+1 )] +[72q+52) )k :l
= - 7 ~ 2
2w

P 7,a+8 8
+ -k—]= tan™t X . tan L 22 - 151 —tan~! Bg ,
4 71q+51- q(q+l 1

fg (&l s
(° + Q%)?

i} ‘{5@ 1;' Ll 2, ([7,a-8,-¢a(g-1)] +[-72q+5 12)4
2(k"+q") d: (202 (Ir,-8, Prl-7,98, )

27 =7 q+8 -7 +8 )
1 -1k -1 «1 ~72%2 .1 "%,
k g ,
( 4 71q- GI-VQ( q.l ) 71

1 gygsg-ll B]_ . h[([?:_ﬁ'al'VQZQ-l)rle +[-72q+52]2)[ ]

(212) (17,0, Paloy 38, 10)

f%nl-a 2
(x* + Q)

6 =
zn 1-2¢-2¥a(g-1 1 32 ([711-51-Vq(q- 1)) +[-72q+8 1%)2
mT i 2w§

208 + &) & | B o Pl e, )
Byl 1k -1 . 71+ 8, tan-) '72*52)
+4=ltan " =~ tan — k + tan T . |
. ( : 7,9-8; Vel 71"%1 f
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APPENDIX D
Eveluation of Complex Integral

In the hydrofoil analysis of Section 3.3, it is necessary to find
the real and imaginary parts of

ﬁ!&.’l zdz = - 2k lzf Zeq )3 (p-1)

cavity

€)
From the theory of residues,
C, = - 2Mb, (D-2)
with bl = the residue at the triple pole Q = ik. Now,

2 2
Kb [(Q+1k)3 o o

On performing the indicated differentiation and noting that w(ik) = O,

one obtains
T[S v ()] 0o

From equation (3.39), the derivatives of the complex velocity are

w!

Do 2%
-M-o-m;

and

" 4 D ¢
!Ufﬂ). - v [—2}\0 + ,;g (3+4Q) - m (2Q+l)] .

These derivatives are evaluated at Q = ik and introduced into equation
(D-3). The resulting value of b, 1s then substituted into equation
(D-2). After some simplification, including the use of equation (3.44)
and the closure condition, cc may be written as




D
c, = - HE fur [(6h1)r-(12801)ks] + 220r- 2k + D)

- D
+ ﬁ&; [(hk2+5)r+ks] + 1 [hAo(k[hk2+5]r+[2k2+1]s) - ?o ([21«%]:--;)

- % (kr-a)]} . (D-4)
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APPENDIX E -
Solution of Quadratic Equation for C/U.

The vorticity parameter €/U_ is found as the solution to a
quadratic equation. The equation is obtained by combining equations
(3.50) and (3.57) and using equation (3.46), the closure condition,
to eliminate I. Parkin has solved the analogous gravity parameter
problem [4]. The nomenclature used here is essentially Parkin's,
but the results are somewhat different.

The following simplifying and systematiging terms are introduced:

H(k) = i‘n[(l#? 8)%+(2xE r)?] - k( tm’l L) 2@.‘. ,

14TF s I(x+vT)

¢, (k) = %ﬁr' Cy(k) = %ﬁ s,

a2

8
Ch(k) = 2m’ S(k) 2ﬂ |
Cé(k) --ﬁ n In [(AK s)2+(2k+ﬁ' r) ] - r( - & tan! ..."_“E_)}

14K s
& (k) = "rs'Ka‘“s)' ]

(k) = % () + (241)s),

Qy06) = B¥ (),

and finally
L=6%-6%-1,
Xp = oY + G

X3 = C34 = %% - &,
X, = 2(a° + 1) (:-/-’l"—)




By using these terms one may now write
a. Equation (3.46) as
a (l + é’)- %—z’ - 5: H. (E-1)

b. Equations(3.38) as

YA = - (1+§)ch+§c5-g:cé
D -

> s T
?°.-a(1+§)c1-§ca-u.c3-

c. the combination of equations (3.57) and (3.50) as

€ o s\ -1 < z\ -1
xut‘?:‘ﬂ"l*%cai(l*?) +qlc33;(1+-§) - R0,

+ 0205§ (1 +§)'1 - Q0 (1 +§)'1 - q3§:(1 +§)‘1-a.

Thus,
Xh%--m&-ﬁ-g‘ (1+z)’1x2+§- (1+§)'1x3
and
= =X, +X

-%—1—*’%2727+1:-(;2F’-ax1+x2. (E-2)

Fov, solving equation (E-1) for (1+Z/2) produces
R AR
1+3="%a (E-3)

The combination of (E-2) and (E-3) in order to eliminate (1+Z/2) yields

(.t;:) 2, - 3—. [-X,k4%, (k-1) + EX, + O, H] = alXkeXy) = O. (1)

i |




WW“?WW”"‘W' )

e g s

[ T

The solution of the quadratic equation (E-L) is

z 1 'kxh + (k“a)x
ﬁ; = ﬁ:{[ ﬁ 3 + ml + x2
=kX, +(k-a)X WX, o ™
iV[ h‘ﬁ 3 +oac1+x2] 2, H" (X, 4%,) .

When (e/U“) >0 (xh > 0), the positive square root must be chosen
because otherwise (‘/U“) approaches a finite limit as € - 0'; this
is of course impossible. For (€/U ) <0 (Xu < 0), the negative square
root is chosen.

(E-5)

L e e
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APPENDIX F
Computations

The computations for the present work were accomplished at the
Stanford University Computation Center on a Burroughs 220 Electronic
Data Processing System. The installation at Stanford consists of a
Burroughs Algebraic Compiler, the 220 digital computer with 10,000
words of core storage, and peripheral equipment. The compiler accepts
symbolic programs written in BALGOL, an algorithmic language based
on ALGOL [23] and produces machine-language programs for the computer
{an).

The programs listed in this appendix are written in the Stanford
version of BALGOL. The BALGOL language statements are reasonebly
self-evident. In the programs shown, use has been made of the computer's
ability to perform repetitive and complex arithmetic calculations with
great speed. Note that each FOR statement indicates a group of
calculations (delineated by the BEGIN - END pair) which are to be
repetitively done. These statements are sometimes nested within each
other. For example, if a FOR group is to be repeated 10 times and
it contains another FOR group which is to be repeated 10 times, 100
repetitions will occur within the second or nested group. The
PROCEDURE SIMPSON 1() is a closed, independent routine which performs
numerical integration according to Simpson's Rule; the procedure may
be called and used at any time In a program in which the procedure
is defined.

When the results are truncated by the computer during calculations
and print-out, no rounding occurs. Thus, truncation causes an un-
certainty of one unit in the last figure of all the tabulated data.
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UNIT WEDGE [N SYMMETRIC SHMEAR FLOW

SIGMA

24918
« 2049
2143
«1770
«1361
«0980
+ 0660
«0872
0361
#0223
«0068
~+0099
~o0815
-s 0689
~+1030

«2073
+1374
«097%
«0741
«0495
0139
~s020}
-2 0037
~e1378
~es 2003

S1GMA
29046

EPSILON/U = 04
ALPHA = 408726
L AREA EPSILON/U

14500 407304 +00292187
24000 (15954 «00319097
24500 429766 +0094355)
3.000 430615 00366156
44000 o.6)08) +00407213
€000 14198} + 00478077
10:00 244721} « 00993009
15,00 449020 «0071172¢
20400 747173 00812369
30,00 14251 +00982828
5000 30.76) 001255645
9000 T4esls +0167226)3
25000 344403 02769784
50040 975,50  <0390908%5¢
1000 275943 205824151

ALPHA = 417452

L AREA EPSILON/V
16500 214609 00584374
20000 431909 00638194
20500 51533 00487107
3,000 73231 00732312
4:000 162216 <00816426
$.000 243903  +0095615%
10,00 5.3442 01187019
1500 99041  +0l02345)
20000 156433  <01624739
30,00 20502 01965657
30,00 616527 02001331
90,00 148,83 03344567
250:0 68%.47 09539308
500,0 1951,0 07019712
1000  5318.6 11048302

ALPHA » 20170

L AREA EPSILON/YV
1500 21914 400876562
24000 47064 00937291
20300 77299  .01030861
3:000 1.0984 <010%408
4,000 1.8326 (0122160
6.000 3:505% 201434233
1000 0.0166 +01701028
1500 16,966 (02138180
20400 234132 02437108
30:00 42.733 02948480
90000 92.291 0370499
90:00 223¢24 05010831
29040 1034,3 08309352
20000 29263 11729560
1000s  0277.9  <1087243)

EPSILON/Y s 400
ALPHA « ,00728
L AREA EPSILON/Y

14500 07304 00984370
20000 219954 200638194
20500 29706 00087107
30000  «30615 00732912
4000 61001 200014426
04000 141991 <009%

10:00 20721 01187620
19000 09020 < 0108345)
20400 77179 <01020739
30000 14231  +01969637
30:00 30763 0291139

300
900.,0 975,50  S7BI9TN2
1000,  2759.3 11000902

ALPMA = (17452
[ AREA EPSILON/Y

10300 10607 01108700
20000 31909 (01376308
2500 <5193 JO15T621D
32000 73231  <01000620

+01620882

6900 243903 OIIDN1)
1600 Se3002 (02378238
19600  9:9041 02000907
20:00 194430 03009477
02  «0993131)

80400 61527 09032062
90:00 108.03 009100

~s196)
~e2958
~s4308

S1omA

34036
1270

«7106
*5309
397
2992
«2490
o219
o19%¢
o179
«1778
«2129
20/

<359

25040 689,67 11079136
500¢0 195140 215639423
1000s 551046 222096809

ALPHA = L20178
EPSILON/Y

16500 421914 01753124
20000 47864 401914582
2500  JT77399 402003323
3,000 1.0984 ,021969)7
44000 148324 202043279
04000 345003 202068447
10400 840164 403562087
15000 18946 04270360
20000 234192 04874217
30:00 42753 03096972
$50:00 92291  .0733399)
90,00 22326 210033701
2500  1034.83 16010708
50040  2926.5% +2349913¢
1000¢  8277.9 33144900

EPSILON/U =004
ALPMA ® ,08726
L AREA EPSILON/Y

14300 407304 ~.00292187
24000 415954 -~.00319097
20500 425766 ~000343993
3000 +36615 ~.009001%¢
4,000 451061 ~.00407213
6000 1:1991 ~c00478077
10000 246721 ~000393009
13,00 449020 ~.0071172¢

L AREA

5000 30.763 ~.01259443
90,00 74416 <e01672203
250:0  304.83 ~402709704
300¢0 97550 -o03909855
1000  275%.3 e 08524191

ALPHA = 17432
L AREA ?siLon/y

10300 214009 ~0008043T4
20000 31909 <~ 0003819
20500  <51933 000087107
3,000 (73831 400732312
40000 1.2216 ~e 00816424
54000 23909 <~ 00004150
10,00 33402 <~o01187610

968
3000 1991.0 ~e078)9712
1000, 9516046 ~011040302

ALPHA & 26178

L AREA PsiLon/y
16500  J2191¢ <0 00876502
20000  J4T004 <~ 0093TIV)

24500 77299 -00103006)
3:000 140904 <. 01090400
4e000 140324 «e0L221639
$4000  3.9835 001434203
10.00 840164 001701430
19:00  10.906 =202199100
20000 294152 <.02037108
30000 42783 «e02008400
90,00 924291 -a037009%
90,00  229:26 «<00010091
290:0 10945 -0 08909352

9500.0 29269
1000  0277:9 «o1007249)
IPSILON/Y 2408
ALPWA » (08720
L AREA EPSILON/Y

34000 430819 <,007323512
009 (81001 <. 00814A00
6,000 141981 0095019
10400 240721 «401187619
19600 449820 001823099

21014
o1616
01369




L]

2208 1000.  2799,3

=e01024730 1272
=0} 57 J1206
= 82031351 1290
~s 03944567

«+ 00899968 1200
= 07819712 (1507
«s13048302 1301

ALPHA = ,17482

SIGmA L AREA

10369 14300 414009
«7189 2,000 31909
o3341 2,500 51393
o830 3,000 73231
e3900 4,000 1.2216
22712 64000 :.3’0’

+3340  500.0 19%1.0
4592  1000. 9318.6

EPSILON/Y (<}

=:01168749 1.09)
=e01270380 8213
=e01374218 9948
“2 01064624 o 497)
-:01620082 4090
«e01912311 3000
-2023752386 <3020
=002000907 42650
«s03249477 L21T)
~s03991339 L2702
~e00022662 2068
-2 00089134 L2082
~e11079136 42031
«s 15639423 3037
-e22096609 <3382

ALPHA = 20178

sl (S AREA
3.077T 1,500 ,L2191¢

16301 2,000 (07064
o156 2500 77299

6912 1000, 8277,

PsILON/Y <o

«s0178312¢ 6043
= 81914882 1.81¢

=s33104900 6001}

CAVITY SHAPE~ SYM WEDSE FLOW

ALPWA = 00720
EPSILON/V » <080
L ® 320 SIGMA = 41000
x w w

1009 e1102 =ellO2
20096 «1954

$.026 o

9.0 «0309
9197 +0308
$.199 «0808
Sei72 .

3100 «017N
Se186 «0l88

Se192 «0100
o198 *009

EPSILON/V » 000
L = 070 SIGMA = +1000

R w "w
letal s1120 =eli2e
24901 «1489

44030 olall
$.092 1126

6193 « 0049
039 «080s
6e323 <0490
04990 0399
60028 113134
[ ] 0203
[ 0220
[ X 34] <0107
o082 «0l61

[ 2 o d «0160
Gobl? 0122 ~o0122

EPSILON/Y == 000
L ® 108 SI6MA ®= 41000
X w A(8

10088 o1161  ~ellel
304006 1712 <aiM12
6e107
82190
9373
.99
10.32
1049
1080
10466
1070

1076 029  =40229
10.7? 0197  ~e0197

EPSILON/Y =000
L= 120, SI0MA & o1000
x w "w
10999 «1216  =el2l6

(33 .3 «3209 <2200
1108 ¢3506 =0 0906

1297 22711 -esl2N)
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UNIT HYDROFOIL IN SMEAR FLOW

EPSILON/Y » 400
ALPHA » ,0174%
AREA EPRIBAR/U

13707 400000000
ALPHA » 403490
AREA EPSI0AR/IY

«00488  ,00000000
«0AT36 200000000
«05001 00000000

+00796 00000000
204525 00000000
649339  L00000000
124701  <00000008
27419 00000000

ALPHA = ,09239
AREA IPs18ARIY

104403
19,112 00000000
010123  +00000000
ALPWA = L0690)
AREA EPSI8ARIY

«08971 00000000
«0%473 00000000
210003 00000000

«11216  «00000000
11041 400000000
o12506 00000000
13569 00000000
«10509 00000000
19973 00000000
27530  JO0NN0N0
«33981 00000000
«35119  +00000000
+T6087 00000000

H




«0708
+ 0390
+ 0408
« 0283
«0229
0176

S10MA

h299
039%
o321%
22029
«22%6

1,280
14330
14400
1300
1750
20000
24500
3. 000

9000
74500
1000
20000
40400
4000
100.0

147%0

144095
201609
6o131)
174339
31.8%4
68399

+00000000
+00000000
+00000000
+00008000
+00000000
+00000000

EPSILON/U = 404

ALPHA = 401748

AREA

«02254
«02302
02516
«02792
03347
04037
05583
«07318
«1127%
15000
° 29342
045649
13407
440620
Te88084
18763

EPS1BAR/V

+00036900
+00036409
00036572
+00037230
+00039620
«00042226
200047145
000051600
0059676
«00064411
«00001378
+00094300
«0013664¢
200204253
00263809
000377023

ALPHA & 403490

370493

EPSIBAR/Y

«00073773
+00072001

2
+00103180
00110924
«00132800
00162707
«00188%42
«00273109
00400291
«00527453
«00753381

ALPHA » 405239

AREA

EPSIBAR/V

+00110620
00109108
+00109650
«00111630
«00118826
+00126420
+00141372
00154736
«00178338
«00199168
200243905
«00202721
+00409617
«00612113
200790693
«01129070

ALPHA = L0090}

160102
e
Tae 885

EPS1BAR/V

«001aT600
«00145912
«0014610%
«0014079%
«0015839¢
«00168783
«00188450

«01093%21
01504110

ALPHA = 408726

AREA
e1124¢

«130%1
e1672¢

EPSIuAR/Y

00184240
+00101831
«00182628
00189940

000197944

01639
1573
«1683
o436
+1420
1405

[<.]

20912
«018%
0710
0637
00532
20476
00417
+0387
«0356
0341
20329
«0320
+0320
0337
00357
20398

(4.}

3182
* 2080
239
«2120
°1736
1%
1328
1222
(3333
1061
«1004

«0978
1029
1082
1209

<N

9239
5132
523
3944
*316C

<0821
+0499
«0687
«0480

20640

™

00348
+ 0292
«0260
«0228
«010%
<0162
«0138
0125
«011%
«0107
«0100
« 0097

«0097
«0101
«0l109

(L]

2992
«191%
*10%6
«l019
o1100

600927
201046
39,109
93,487

+0021092¢
00239807
00257702
00297078
00931722

00400480

.
+ 00470094
«00682138
+91019088
01316002
+01878487

EPSILON/U = 408
ALPHA = (01749

AREA EPSIBAR/Y
002266 00074520
02396 00073590
02932 00073944
+02781 00078320
«03377 00080304
040 100085493
o 00099063
07446 00108920
«11940  +00122008%
160271  +0013702¢
30598 00169997
40177 L0019
1.078% 00381743
4e8437 10
10209 400008672
29,608 01393067

ALPHA = 09490

AREA EPSIBAR/Y
04931  +00148%48
+0AT90 00147004
000083 00107800
03501  +00150540
«06792 00160928
08158 00171306
11921 00191028
«1608% 0021
230080 00243981
32529 0027
1152  003ITHS
o9, 200998368
2:9%0%

92.6726 009711
200453 01374209
59,117 02376042

ALPHA = 09238

AREA EPSIBAR/Y
? 00223283
07182  «00220481
07592 00221906
+00209 400229710
31 ] .
12232  <0020682¢
216979 00207990
022318 00315402
. «00369791
«8701  +0001
«P1670 90909
140432 00997119
Y 14
144400 01000000
30:812  «02000009
88292 03349000
ALPNA = L0090}
AREA EPSIBAR/Y
09039 00297468
09573 00293783
010129 o 204
ol 200390770
o13494 (00320712
«16303  +0034229)
«22024 00383098
20744 (000
40091 200487497
«00979 (00947159
162213  +00070654
149229 00799970
93,0980 401203366
19,209 01990210
40.727 s 02736499
11721 04712000



ALPHA = (08726 UNIT HYOROFOIL 1N SHEAR FLOW
SIGMA L AREA  EPSIBAR/Y (] (] ALPHA = ,0698)
6209 1,250  S11319 00371573 6262 2377 EPSIBAR/Y » 4000000
03608 14330 411962 200366987 5186 L1909
03226 14400 412645 (00368822 <0549 L1638 L 7,50 SIGMA = .0863
«2002 14500  o13738  J0037S750 3972  .lel7
02272 1,790 +16862 400600672 (3192 1099 x Y "
01966 24000 20371  J00427593 42795 L0940
W1872 24500 220268 00470820 42995 L0761 +0028 «0010  =¢0002
o1387 3,000 o37166 4005288528  +21% 40701 «0381 «0038  ~40024
<1100 4,000 (57585 +00608982 1998  .062) +2027 +0183  ~e0161
«094 5,000 81180 00683546 <1906 <0385 o$722 «0372
<0768 7,500 1.5259 (00847740 1810 0544 10547 20364
0066 10400 244019  <00993747 <1000 <0529 24723 <0083
<0492 20,00  7.3653 01502702 <1870 0927 3.930 <00
00393 40,00 244070 <02034032 <2130 0T 44947 «0638
<0368 60,00 50,798 03413173 L2467 (0636 3,707 «0922
<0380 10040 143,90 05065206 <3349 0013 602640 <0409

UNIT HYDROFOIL IN SHEAR FLOW Te290 =0002%
74395 ~00062 ~oB674
EPSIBAR/U » 4000000 EPSIBAR/V 5 4002211 EPSISAR/U = 5009008 Ta369  =o0094  ~.004)
74395 =o0121  -~o0016
ALPHA v (01745 ALPHA = 406901 ALPHA = 40098) Tadls 00143  =00393
L ® 4,00 SIGHA = 40203 L= 1625 SISMA = 43257 L w 10.0 SIGNA & (0814 EPSIBAR/U & .003232
x c» x cr x c* L s 750 SIGNA = 0385
#0033 1623 #0129 led21 *0027 «7252 x w "
0297 <0899 «1032 <0828 0209 9966
<0816 <0004 +29500 oS4TS «0009 « 2097 «0028 +0011 -« 0002
1969 0830 4110 <4708 #1362 2290 «0391 +0083  =e0026
o2929 <0836 9993 osl6l «2200 <1009 2027 <0200 =-e0l61
3663 20362 0863  o3492 «3291 «1830 W6722 <0811  ~e008Y
0285 40329 oIITT 43418 9806  J1302 16367 <0027  ~o0907
4937 40298 7893 TV 483  o1263 2,723 072 ~ol22)
3616 <0267 «8277 L2930 o188 1108 30930 <0779 ~olNN9
«631% 0237 8699 2008 5882 <097 4a987 0786 -o1290
«7032 50207 8908 2304 839 20803 3,707 0889  ~,1216
7763 *0175 +9206 +2006 7431 +8706 64240 0088  =ell2é
«8503 +0140 9951 1686 8256 0997 60000 0990 =109
«9290 <0097 <9788 01194 9113 <9380 08353 0290 ~e0992
1:000 40000 16000  =+0000 14000 ~.0000 74826 0306 -.z:
Tol0A +00% -y
EPSIBAR/Y = 4000894 EPSIGAR/U = 4003124 EPSIBAR/Y = <027540 76229 <0030  ~o07T!
Te290  <c0010 ~o0728
APHA ® ,01748 ALPHA = 00981 ALPHA * L0098 14999 <. 0800 -.m:
7:309 =o0085  =c086
L ® 4,00 $1GRA = 40208 L 3,00 SIGMA = +1063 L s 100s SIGNA s <0236 Te398  «e0116 o089
Te016  =e019% =08812
x [{J x cr x [+ 4
IPSIGAR/V © 006700
«0033  .1602 «0037 L7484 <0029 14199
0297 <091 0333 4267 0227 <0300 L ® 750 SIGMA = <0610
+0816 *0087 «0909 «309% 0690 8931
01569 L0348 CITI1  o2086 1298 <3969 X w n
«2529 * 0431 2758 2093 2061 «2006
3043 037 3961 M) +3068  o29%0 +0020
w2 0239 A376 <1997 #3623  o2113 «9951
w937 +0308 S22 o1611 *4309 2027
5616 <0279 9903 1209 w92 el «6722
6913 0264 983 o1127 *3609 +1098 1907
7032 L0212 7272 L0903 00623  J1268 2723
7763  J01T9 1901  J0832 1T S 34930
9303  +0162 8007 <0004 B119 L0793 o947
9250 2009 9328 o049 9039 <0829 s.707
1000 -+ 0000 9999 <. 0000 10000 = 0000 :x
EPSIBAR/U = 001220 EPSIBAR/Y = (004041 %.on ;
APHA * 201789 ALPHA = <0690) 70108 :
? H
L ® 4,00 SIGMA » 40212 L = 5:00 $I16MA » 0793 e :
T390
x cr x < 14909
199
«0033 1743 +0031 o219 7.8016
+0297 +0963 0279 «N7Y
0816 <0710 0109 2929
01969 0966 1088 o292
« 2929 « 9483 « 2009 ol
23003 «0384 *93919 «1972
0209 <0909 Yt RS T
20937 «0319 W77 «120%
9610 «0202 3456 +1150
918 202950 6164 <1017
«7082 «0217 *$09% o
« 7783 «0182 « 7649 «0762
«8303  o0148 0419
T30 40099 9200 <0000
10000  =40000 1000  ~40000
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APPENDIX G

Wrctvita%n_‘ Flow about a Slender Wegﬁe
in a Transverse QOrav e

Here the results of Section 3.1 are used tu calculate the flow
parameters for a supercavitating flow about a slender wedge in a trans-

verse gravity field. The corresponding flow about a supercavitating,
flat-plate hydrofoil has been studied by Parkin [4], while Acosta [5)
considered the flow about a slender wedge in a longitudinal gravity
field. The purpose of this work is to complete the studies of
gravity effects in linearigzed flow. As in Parkin's work, this treat-
ment of the problem is not capable of descridbing cavity flows with
large, bouyant effects. The theory is expected to be valid when the
effects of gravity are of first order smallness consistent with the
linearization approximations. The notation used here is consistent
with that used previously.

The base flow is an irrotational, inviscid, and incompressible
uniform flow extending to infinity. The upstream velocity far from
the wedge is U_, and the origin of the coordinates (x,y) 1is taken at
the nose of the unit length wedge which is aligned symmetrically in
the flow. The reference elevation at infinity is, then, zero. The
flow is sketched in Figure 31. The acceleration g due to gravity
is directed downward in the minus y-direction, perpendicular to the
freestream velocity and wedge path.

In this flow, Bernoulli's equation is given by

p, + 300 = p + dod; + pay, = b, + #0d> + oy, (6-1)

with the subscripts referring to infinity, the wedge surface, and the
cavity surface respectively. Since the condition of constant pressure
in the cavity must be satisfied in steady flow, the non-dimensional
cavitation number may be defined as

cr-;-p?— . (6-2)
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Another characteristic non-dimensional parameter peculiar to gravity
flows is the Froude Number F which is given by

F2 = Ui/g(l):

when based on the unit length of the wedge.

In accordance with the assumptions of the linearized theory
developed in Section 2, the flow velocities near the body are assumed
to be represented by the perturbation components u and v such that

S
Q= (U + u,vs

st eny point in the flow. From equation (G-1), one has, to the first
order, on the cavity

%;-g-%. (6-3)

In accordance with the basic assumption of slenderness in the lineariszed
theory, one can argue that the variations in the gravity term in
equation (G-3) are small over most of the cavity (see Section 2.1).
Thus, the term gyc/U‘,° may be replaced by an average term + E The
boundary conditirn (G-3) becomes

- '5') y>o,
®

'%"’ﬁ‘: y <0,
[ ]

on the cavity surfaces. On the wedge, the boundary condition 1s given
by

nlq

and

(G-30)

e

dy (x) v(x,y.)
T° - o = ) "’;o . (G-4)

nlq
L

If one lets U o ™ U“ (1 + - a result from the sero gravity case -
and expends equation (G-4) in terms of U,» he finds, to the first
order, that
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vV = Oﬂc »y ¥y>0,

and (G-lLa)
V- "dUc: ¥y<0o,

on the wedge.

From the results of Section 2.2, it follows that the boundary
conditions (G-3a) and (G-la), together with three assumptions - cavity
closure, the vanishing of the perturbation velocities at infinity,
and smooth separation at the trailing edges of the wedge - are sufficient
to determine a solution to a boundary value problem for the complex
perturbation velocity w. Recall that w was defined in Section 2.2 as

w=u-=1v,

with w analytic outside the slit x-axis of the physical z-plane.
The complete boundary value problem is as follows:
To find w(x), analytic off the slit, such that

2
D. E. 5—"_ =0
Jzdz

B.c.
U“c - +
a) Real(w)-T-g, 1<x<4 y=0

Uo
b) Real(w)=—‘2°—+'g', 1<x<4 y=0
¢c) In(v) = -au, 0<x<1l y=0"
a) Im(w)saUc, 0<x<1, y=0

e) the cavity closes, i.e., the net source strength is
gero on the slit.

£) w(g) >0 as z >,

g) there are no singularities at the trailing edges of
the wedge.

- 89 -




As before, 2 = x + iy, and the boundary conditions are applied on the
slit x-axis in the complex g=-plane.

If g = -€, the above boundary value problem for a "gravity flow"
is precisely the same as that given in Table 1 for a uniform shear
flow past a wedge. Again, one sees the similarity, at least in the
linearized case, of rotational and gravity flows. Because of this
similarity, the results of Section 3.1 may be used directly after
appropriate changes of notation.

One finds first that the gravity field has no effect on the
cavitation number - cavity length equation or the cavity area. Thus,

o _Qa ﬂ]_. A/)
2+a=n(£n ml+ﬁ) (G-5)
and
a =a(/?. 1), (c-6)
Second, on the cavity surfaces the horizontal component of the
velocity 1is

Uw(l-t-%):'g'

on the upper and lower surfaces respectively. Thus, one has for the

yc Qa f v
= — u
T=21" (U -)

1 c 8

cavity shape

on the upper surface and
Y f
¢ o4 v
= = + e— dx
-5 ( )
¢
on the lower surface. From equations (3.13) of Section 3.1, following
substitution of -g for €, one finds that




Y¢ a Qa l1 2=
. = - - D - h
& T =73 f[ 4 2 b ¢

(Cemy2(Pem)®

on the upper surface.

]
y 21 2-
b-'zg“z l [( )-Dégzhnshlﬁ
1
an1 1] ‘1 4 t<-1, (c-8)
+T) (;+R) -

on the lower surface.

[ Lh(Ll=1 t ] (G-9)
(t%+T) (t54R)

Also, from Section 3.1, the constants A and D are

U
A = wry
MrEL)
and -
= &R oF -+ /ED).
In the above, T = 24 - 1 + 2Y8(Y)
and R =24-1-29EY).

The pressure force coefficients are calculated next. The major
difference between the rotational and gravity cases occurs in these
calculations. This difference is due to the fact that while the ro-
tational effect enters the pressure coefficient Cp only through the
perturbation velocity terms, the gravity effect enters through both
the velocities and the term pgy, 1n the Bernoulli equation (6-1).
The pressure coefficlent Cp is defined to be
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PR

o~ Te
C_ = . (G6=10)
AT -
Th
ues P, - Py
C =0+
P 30 Ui
and, from equation (G-1), one obtains
2
C.=oc+1- H 2 .
P ¢ 2

In accordance with Parkin's discussion(4] regarding the linear contribu-
tion from the second order term (u/U”)a, one obtains after linearization
the relation

cp-ia(g:)x- (2+cr)(%:-%), (c-11)
vhere + gx/U_ replaces gyo/Ui on the upper and lower wedge surfaces .
respectively. One should refer to Section 2.3 for a detailed discussion -
of this substitution and should compare equation (G-11) with its rota- -
tional equivalent equation (3.14). By using the results of that section, .

one has

i a 8in6 1+a:me|
Cp = + 2(U¢,)x + (2+0‘) T (2+0')(z_—1— + In T-sin6

- %— %2 -1+2 1:T In (T« ﬂ:T)ta.ne]} (G-11a)
(- -]

with x = § cosae/(}-sinze). The minus sign and O < 6 < II/2 apply to
the upper wedge surface; the plus sign and II/2 < 6 < Il apply to the
lower surface.

The remainder of the force coefficients are determined from
equation (G-11). First, the drag coefficient Cp 1s given in Table 4

as -
D 1 ’

C,. = --z=Dc gy (¢-12) -

D %;.(2") Bofr P ]

- 02 =




Since Udy = vdx on the wedge and 2uv = - Im wz(z), one may write

2 -—
1 v - (4
Cp=- 55 Im¢-u-é dz + 2¢+ (ﬁ;)xdy + (2+0')-2-¢d.y .
BODY "= BODY BODY
From Section 3.1.2,

m¢§ dz = - In Jy + (2+c)¢1 (é;) dy + (2+0) %SSa.y

BODY = CAV CAV

The closure condition for this cavity model requires that ﬁd.y = 0.
BODY + CAV
By using these results, one obtains

1 2+o/h- (E 1 M= [E

=i 5703 (f) o - 507 (§)
CAV DY

since x = y/a on the wedge. Finally, it is easily shown that the

last two contour integrals in the above are zero; hence, with the

value of J, given in Appendix B,

T
2
c, - d2gle L (¢-23)

Second, the 1lift coefficient C‘L

oIp— =0c_ax.
L ép%(cnoan) BOI?; P

is defined in Table L4 as

From Equation (G-11),

°L"2(§;) fxdx-lfxdx -(2+a;o?y%;u.
(o]

After one performs the indicated integrations and notes that
Re(v/U_)az = (u/U )dx on the slit, the above equation becomes

c, - a(%—) - (2+0) R;o?jt de.
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The results of Section 3.1.2 show that

Re¢ﬁ— az = ﬁ- 24T(ET) (1 s “?T— I (0T + 'fm) .a(z.l)] :
BODY

Thus,
¢, =2 g-[-(a+a){mr'5‘ [1 L - ta(4F VET) m}]

‘G-14)
Third, the moment coefficient about the nose of the wedge 1is

defined in Table 4 as

6 = L'gdist. to L) =¢Cpxdx.
30U (CHORD)®  por
To the first order,
- 1 o]
Cyo = 25;([::2&:: -fxedx) - (2+a)55u xdx.
o 1 BODY

Following simplification and introduction of complex notation, this

equation becomes
3 (%—) - (2+0) Re ¢wzd.z.
BODY

CMO=3 A

In Section 3.1.2, it 1s shown that

R;O?szdz - 55; [ﬂu-—ﬂ(ahl) {1 + %[%ﬂ + l-T]}
-2(12-1)] .

Thus,

By 2w z‘\[ Wb (YRAVET) ( 2 147
‘w0 u“[s T(m(a )1+ (1) (1-T) ('ﬂg"—)‘
]. (6-15)

+ (1-T) )] - 2(32-1))
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Finally, it remains to define the gravitation parameter g/U_. On
the basis of the analogy between the lineariged rotational and gravity
problems, this definition is taken directly from equation (3.23) of
Section 3.1.2; hence,

By introducing equation (G-6) and the Froude Number F into this result,

one has
§ - -ﬁr——l" 2 - . (G-16)
w 2F(4-1)
The complete solution is summarized in Table 9.
Certain results of the gravity flow analysis are the same as
those previously obtained in the study of uniform shear flow past a
wedge. These duplicated results include the cavity length-cavitation
number relationship, the cavity area, and the drag coefficient - all
of which are independent of gravity effects. Figures 7 and 8 show
the drag coefficient C]J and cavity area Ac as functions of o. The
L-c relationship is plotted in Figures 16 and 17; the curve for gravity
flow is the same as that for irrotational gravity-free flow, i.e., the

curve labelled G/U“ = 0. As in the gravity-free case, the cavity length
is limited in this linearized theory so

1+%—a(1+§ln§—n) <l<ew,

It is possible, however, that as £ »> w (o » 0), the effects of gravity
may be exaggerated. Finally, since €/¢ 1is equal in magnitude to
(&/U“)Fa, Figure 9 gives a plot of both parameters.

The remainder of the numerical results are listed in Appendix F
and illustrated in Figures 32 through 37. Figures 32 through 35
picture the pressure force coefficients. The first two figures show
the effect of cavitation number on CL and (.!m in a gravity field.
Note that both coefficients are linear functions of :L/li‘2 Hence,
independent of o, both coefficients are inverse functions of the

.95-




square of the Froude number. As o approaches zero, the lift and
moment become negatively infinite for all finite Froude numbers. The
limitations of the theory are seen clearly in Figures 34 and 35, which
show the pressure coefficient. When the Froude number is small, the
gravity effects are large and the pressure coefficient on the lower
side of the wedge is negative over the whole body surface. Such a
condition (one in which the pressure on the body is always less than
the pressure in the cavity) is contradictory. However, as in the case
of uniform shear flow past a wedge, it seems permissible to allow

a negative pressure in the immediate vicinity of the nose of the wedge
for the reasons presented in Section 3.1.3. Thus, in Figure 35

for example, the curve of Cp ve x for F° =16 1is a ressonsble
approximation, while when F© = L4 1t is seen that the limits of the
theory have been exceeded. This behavior corresponds to that found by
Parkin [4] in his study of gravity effects on hydrofoils. In the
present case, the behavior is due to the increased size of the gravity
effects, represented by g/U_, for small Froude numbers. Since this
theory was expected to hold only for flows with small gravity effects,
its use must be restricted accordingly. The behavior of Cp acts,
then, as a guide to the limits of the theory.

The final figures, Figures 36 and 37, show the effect of Froude
number on cavity shape and the effect of cavitation number on the
location of the center of 1lift at an arbitrary Froude number (since
Cw/CL is not a function of F). The cavity shape is seen to be
distorted downward in the middle and upward at the end. The effect
of the transverse gravity field is exactly opposite to the effect of
a uniform shear flow with positive vorticity (see page 38 and Figure
10). The fact that the cavity is not inclined upward by bouysncy is
no longer surprising since the same result was predicted by Parkin's
snalysis and has been confirmed by experiments on cavitation behind
two-dimensional bluff bodies at the California Institute of Technology
(25].
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TABLE 1. BOUNDARY VALUE PROBLEMS FOR COMPLEX PERTURBATION VELOCITY

VWedge Hydrofoil
2
D.E. Hw(s) , 0 _5_5;_3' 1) . ¢
010% 303
B.C.
U, - U
a. Re(')=;§+€.l<x§& a. Re(v)--;;g-+?,0§xf_'£,
y = o y - ot
I} - U
b.Re(v)*T‘z-e.l<x§& b.Ro(v)'—-;.z--?,l<x§'f,.
y - 0" y = 0°
c. In(w) = call, 0<x<1, ¢. None
v."‘ ot
d. Im(w) =all, 0 <x <1, d. Im(w) = 4al, 0 < x <1,
y - 0" y - 0"
e. The cavity is closed, i.e., the net source streagth on the slit is zero.
f. w(z) 0 as s—® j,e,, (u,v) = 0 at infinity,
g. w(3) must not contain nonintegrable singularities on the slit or have
multiple values off the slit. i
h. The flow ia characterized by a smooth separation from the rear of the body,

i.e., w<® at x=1, y=—0.

TABLE 2. - TRANSFORMATIONS

Vedge Hydrofoil
¢ = k2.2 Mobi - k2 3
r; ( l“l) t E
Q= S k( 3 ),‘ (Square root) Q = t“ = k( ),‘
y y
20={+1 (Joukowsky) 20 +1 = L ([ +1)
4 2L

k=Tl
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2.

3.

4.

5.

.Bnlnd on first-order smallness of angle of attack a.

**Taken at leading edge of body; positive in the counter-clockwise direction.

TABLE 4.

Coefficient

P-P,

-}
(]
~

PRESSURE FORCE COEFFICIENTS

VWedge

(2*2)(ibg;x+%.u_‘;)

- 101 -

Hydrofoil

.(2+2)(§. x +.8 .
U U

fl
C,  dx
0 p

a oy

o iM

)
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TABLE 6. SUMMARY OF RESULTS FOR ASYMMETRIC WEDGE FLOV.

Quantity

Cavity
Length

Cavity
Area
Cavity
Shape

Pressure
Coefficient

Upper
Surface

Lower
Surface

Drag
Coefficient

Lift

Coefficiemt

Moment
Coefficient

Vorticity
Parameter

Equation No.

2+2 17( L TE) -8

A, = a2 . 1) (3.11b)

(See equations 3.13 a, b, and ¢) (3.13)

- a sin 6 1 + sin 6
(2 +Z)[ (2+3) ('Z_ Ll e a')

+.§ 6. 1 +201-T) tan O -4a (ﬂ‘hﬁ)"'x)] (3.16)
Ug \ 77 m(14T)
0<8<n/2

cp = (2.',2) [a. (2+Z)( sin O +,‘. |1+lil 9|)

1-8in @
+ €126 1+-L1-—P-me &.(/l+/li')-x}] (3.16)
Ue
n/2<6<n
x -.’{‘._9.9_'3_9_ (3.15)
4-ain2 0
¢ =@+2)2 ad/md- 1) (3.18)

c -(%)(uz) I [1+-.!I-4. (ﬂh’ﬁ)] +-;--&} (3.20)

12.1

(& )en{n()

. (1 +$T_ﬁ_£/_’€_*@.[1.-r +2@ﬂ*_ﬂ]) +L.42\ (3.22)
(12.1)(1-T) t1 3
E£. (_f.)sif_g_ﬂ (3.23)
o \u /) 2D

NTE: T=2-1+2V24-1).
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TABLE 7.

Quantity

Cavity
Length

Cavity
Area

Cavity
Shape

Pressure
Coefficient

Drag
Coefficient

Vorticity
Parameter

NOTE: T = 26-1 + 2 VAE-1); R = 2b-1-2 VIE-1).

ol ) ) s e

SUMMARY OF RESULTS FOR SYMMETRIC WEDGE FLOW

A, =ad¥?.n

Ye

o Mag

T

Equation

t
[{ - -z- - 44-1) tan

Y
drlep2)

4

x =40 - 4(d-1)e2/ (£24T(e2 +R))

.;_1_]

_L-ndl o

(L2+1)2([2+R)2

€ a sin 6 1+sin O
CP = (2+a)[(i-) (x-1) +-1-r (2+0) (Tl—""'{n l"——l

x = £ cos? 9/(£-lin2 o)

cp = (2+ 12 ab/mid-1)

€

[

*(

£
Up

)

a§'{3/2-l)
2(4-1)

- 104 -

1-sin O

0<6<n/2

)

No.

(3.

(3.

(1.

(3.

(3.

(3.

(3.

(3.

26)

28b)

29a)

13¢)

32)

31)

33)

4)
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TABLE 9.

Quantity

Cavity
Length

Cavity
Area

Cavity
Shape

Pressure
Coefficient

Upper
Surface

Lower
Surface

Drag
Coefficient

Life
Coefficient

Noment
Coefficient

Gravity
Parameter

MortE: T = M1+ 2V

SUMMARY OF RESULTS FOR WEDGE FLOW IN TRANSVERSE GRAVITY FIELD

2+0

A, = a(’f3/2- 1)

Equation

S s(edt )

(See equations G-7, 8, and 9)

Cp, = 2(?1?;) x4 (2401 {2 (2vo) (£eC ¢ fa | Hain 8

.E
Uﬂ

= 42 -;—
Cp (u

s
0]

)x + (28 (zm(

< d cost O

4-sin? 6

Cp = (2402 ad/mid-1)

Q= 2% [x -(2%0) {Ak-1) [1 +-T-;-‘:'Ifcn (/Z+/ZT)]-&+1}]

o * _3.[4 S—-)-{\/I'Z-—mﬂ)[

0<8 <mn/2

nf3<6<m
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l-sin

[l'i-nlﬂ:-"—’h (VT +V1D) tan a.J)
7w w1

un @, ,{m 1tsin 6

l-n:n 6

[2-1+ 20D 40 LD cen o))

I4sin O

6

e

1+M

(12.1)(1-7)

( ﬂ—%)ﬁiﬂ + 1.1)] -M’-n}]

5— . a(43/2.1)/2F2¢4-1)

No.

(G-5)

(G-6)

(6'7’ 0, 9)

(G-1lle)
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b. Problems

FIGURE 1. FLOW PATTERNS AND PROBLENMS.
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a. Vedge

FIGURE 2.
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b. Hydrofoil

FULLY CAVITATED FLOWS.
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b. Hydrofoil flow

MAPPING OF z-PLANE ONTO UNIT CIRCLE.
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FIGURE 7. DRAG COEFFICIENT VS CAVITATION NUMBER FOR
FLOW PAST A UNIT WEDGE.
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FIGURE 8. CAVITY AREA VS CAVITATION NUMBER FOR FLOW PAST A
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CAVITATION NUMBER FOR FLOW PAST A UNIT WEDGE.
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FIGURE 13. Z = 0.0865, 4 = 30, a = 10° PRESSURE COEFFICIENT
FOR SHEAR FLOW PAST A WEDGE.
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FIGURE 14. = = 0.0483, 4 = 90, a = 10° PRESSURE COEFFICIENT
FOR SHEAR FLOW PAST A WEDGE.
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FIGURE 20. CAVITY LENGTH VS CAVITATION NUMBER FOR
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FIGURE 24. NORMAL FORCE COEFFICIENT VS CAVITATION NUMBER
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